Optimal. Leaf size=19 \[ x-\frac {12 x^2}{\log ^2\left (16 \log ^2(x+\log (x))\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {48 x+48 x^2+\left (-24 x^2-24 x \log (x)\right ) \log (x+\log (x)) \log \left (16 \log ^2(x+\log (x))\right )+(x+\log (x)) \log (x+\log (x)) \log ^3\left (16 \log ^2(x+\log (x))\right )}{(x+\log (x)) \log (x+\log (x)) \log ^3\left (16 \log ^2(x+\log (x))\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {48 x (1+x)}{(x+\log (x)) \log (x+\log (x)) \log ^3\left (16 \log ^2(x+\log (x))\right )}-\frac {24 x}{\log ^2\left (16 \log ^2(x+\log (x))\right )}\right ) \, dx\\ &=x-24 \int \frac {x}{\log ^2\left (16 \log ^2(x+\log (x))\right )} \, dx+48 \int \frac {x (1+x)}{(x+\log (x)) \log (x+\log (x)) \log ^3\left (16 \log ^2(x+\log (x))\right )} \, dx\\ &=x-24 \int \frac {x}{\log ^2\left (16 \log ^2(x+\log (x))\right )} \, dx+48 \int \left (\frac {x}{(x+\log (x)) \log (x+\log (x)) \log ^3\left (16 \log ^2(x+\log (x))\right )}+\frac {x^2}{(x+\log (x)) \log (x+\log (x)) \log ^3\left (16 \log ^2(x+\log (x))\right )}\right ) \, dx\\ &=x-24 \int \frac {x}{\log ^2\left (16 \log ^2(x+\log (x))\right )} \, dx+48 \int \frac {x}{(x+\log (x)) \log (x+\log (x)) \log ^3\left (16 \log ^2(x+\log (x))\right )} \, dx+48 \int \frac {x^2}{(x+\log (x)) \log (x+\log (x)) \log ^3\left (16 \log ^2(x+\log (x))\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 19, normalized size = 1.00 \begin {gather*} x-\frac {12 x^2}{\log ^2\left (16 \log ^2(x+\log (x))\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 33, normalized size = 1.74 \begin {gather*} \frac {x \log \left (16 \, \log \left (x + \log \relax (x)\right )^{2}\right )^{2} - 12 \, x^{2}}{\log \left (16 \, \log \left (x + \log \relax (x)\right )^{2}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 38.65, size = 40, normalized size = 2.11 \begin {gather*} x - \frac {12 \, {\left (x^{3} + x^{2}\right )}}{x \log \left (16 \, \log \left (x + \log \relax (x)\right )^{2}\right )^{2} + \log \left (16 \, \log \left (x + \log \relax (x)\right )^{2}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.33, size = 89, normalized size = 4.68
method | result | size |
risch | \(x +\frac {48 x^{2}}{\left (\pi \mathrm {csgn}\left (i \ln \left (x +\ln \relax (x )\right )\right )^{2} \mathrm {csgn}\left (i \ln \left (x +\ln \relax (x )\right )^{2}\right )-2 \pi \,\mathrm {csgn}\left (i \ln \left (x +\ln \relax (x )\right )\right ) \mathrm {csgn}\left (i \ln \left (x +\ln \relax (x )\right )^{2}\right )^{2}+\pi \mathrm {csgn}\left (i \ln \left (x +\ln \relax (x )\right )^{2}\right )^{3}+8 i \ln \relax (2)+4 i \ln \left (\ln \left (x +\ln \relax (x )\right )\right )\right )^{2}}\) | \(89\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 62, normalized size = 3.26 \begin {gather*} \frac {4 \, x \log \relax (2)^{2} + 4 \, x \log \relax (2) \log \left (\log \left (x + \log \relax (x)\right )\right ) + x \log \left (\log \left (x + \log \relax (x)\right )\right )^{2} - 3 \, x^{2}}{4 \, \log \relax (2)^{2} + 4 \, \log \relax (2) \log \left (\log \left (x + \log \relax (x)\right )\right ) + \log \left (\log \left (x + \log \relax (x)\right )\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.03, size = 739, normalized size = 38.89 \begin {gather*} x+\ln \left (x+\ln \relax (x)\right )\,\left (\frac {6\,x^2+6\,x}{x+1}-\frac {3\,x^2+3\,x}{x+1}+\frac {6\,x^3+12\,x^2+3\,x}{x+1}-\frac {9\,x^3+15\,x^2+6\,x}{x+1}+\ln \relax (x)\,\left (\frac {3\,x^2+6\,x}{x+1}-\frac {6\,x^2+6\,x}{x+1}\right )\right )-\frac {12\,x^2-\frac {6\,x^2\,\ln \left (x+\ln \relax (x)\right )\,\ln \left (16\,{\ln \left (x+\ln \relax (x)\right )}^2\right )\,\left (x+\ln \relax (x)\right )}{x+1}}{{\ln \left (16\,{\ln \left (x+\ln \relax (x)\right )}^2\right )}^2}-\frac {\frac {6\,x^2\,\ln \left (x+\ln \relax (x)\right )\,\left (x+\ln \relax (x)\right )}{x+1}-\frac {3\,x^2\,\ln \left (x+\ln \relax (x)\right )\,\ln \left (16\,{\ln \left (x+\ln \relax (x)\right )}^2\right )\,\left (x+\ln \relax (x)\right )\,\left (2\,x+\ln \left (x+\ln \relax (x)\right )+2\,x^2\,\ln \left (x+\ln \relax (x)\right )+2\,\ln \left (x+\ln \relax (x)\right )\,\ln \relax (x)+x^2+4\,x\,\ln \left (x+\ln \relax (x)\right )+x\,\ln \left (x+\ln \relax (x)\right )\,\ln \relax (x)+1\right )}{{\left (x+1\right )}^3}}{\ln \left (16\,{\ln \left (x+\ln \relax (x)\right )}^2\right )}-{\ln \left (x+\ln \relax (x)\right )}^2\,\left (\frac {60\,x^5+264\,x^4+432\,x^3+312\,x^2+84\,x}{x^3+3\,x^2+3\,x+1}-\frac {54\,x^5+243\,x^4+\frac {831\,x^3}{2}+\frac {639\,x^2}{2}+\frac {213\,x}{2}+\frac {21}{2}}{x^3+3\,x^2+3\,x+1}-\frac {6\,x^2+18\,x+\frac {50}{3}}{x^3+3\,x^2+3\,x+1}-{\ln \relax (x)}^2\,\left (\frac {3\,x^2+9\,x+3}{x^3+3\,x^2+3\,x+1}-3\right )+\ln \relax (x)\,\left (\frac {3\,\left (\frac {11\,x^3}{3}+13\,x^2+16\,x+\frac {22}{3}\right )}{x^3+3\,x^2+3\,x+1}-\frac {6\,x^2+18\,x+14}{x^3+3\,x^2+3\,x+1}+\frac {36\,x^4+108\,x^3+108\,x^2+36\,x}{x^3+3\,x^2+3\,x+1}-\frac {27\,x^4+119\,x^3+192\,x^2+120\,x+26}{x^3+3\,x^2+3\,x+1}+18\right )+\frac {18\,\left (\frac {11\,x^3}{6}+\frac {13\,x^2}{2}+8\,x+\frac {11}{3}\right )}{x^3+3\,x^2+3\,x+1}+\frac {3\,\left (\frac {121\,x^3}{18}+\frac {155\,x^2}{6}+\frac {209\,x}{6}+\frac {109}{6}\right )}{x^3+3\,x^2+3\,x+1}-\frac {36\,x^4+108\,x^3+108\,x^2+36\,x}{x^3+3\,x^2+3\,x+1}+\frac {108\,x^4+324\,x^3+324\,x^2+108\,x}{x^3+3\,x^2+3\,x+1}-\frac {81\,x^4+\frac {1181\,x^3}{3}+730\,x^2+613\,x+\frac {613}{3}}{x^3+3\,x^2+3\,x+1}+111\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.79, size = 19, normalized size = 1.00 \begin {gather*} - \frac {12 x^{2}}{\log {\left (16 \log {\left (x + \log {\relax (x )} \right )}^{2} \right )}^{2}} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________