3.17.93
Optimal. Leaf size=32
________________________________________________________________________________________
Rubi [F] time = 26.23, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[E^(x/E^((2 + x + 2*x^2 - Log[4])/x) - (2 + x + 2*x^2 - Log[4])/x)*(2 + 3*x - x^2 - 2*x^3 + E^((2 + x + 2*x
^2 - Log[4])/x)*(1 + 2*x) + E^E^4*(2 + E^((2 + x + 2*x^2 - Log[4])/x) + x - 2*x^2 - Log[4]) + (-1 - x)*Log[4])
,x]
[Out]
Defer[Int][E^(4^x^(-1)*E^(-1 - 2/x - 2*x)*x), x] + Defer[Int][E^(E^4 + 4^x^(-1)*E^(-1 - 2/x - 2*x)*x), x] + (1
- Log[2])*Defer[Int][2^(1 + 2/x)*E^(-1 + E^4 - 2/x - 2*x + 4^x^(-1)*E^(-1 - 2/x - 2*x)*x), x] + 2*Defer[Int][
E^(x/E^((2 + x + 2*x^2 - Log[4])/x) - (2 + x + 2*x^2 - Log[4])/x), x] - Log[4]*Defer[Int][E^(x/E^((2 + x + 2*x
^2 - Log[4])/x) - (2 + x + 2*x^2 - Log[4])/x), x] + 2*Defer[Int][E^(4^x^(-1)*E^(-1 - 2/x - 2*x)*x)*x, x] + Def
er[Int][4^x^(-1)*E^(-1 + E^4 - 2/x - 2*x + 4^x^(-1)*E^(-1 - 2/x - 2*x)*x)*x, x] + 3*Defer[Int][E^(x/E^((2 + x
+ 2*x^2 - Log[4])/x) - (2 + x + 2*x^2 - Log[4])/x)*x, x] - Log[4]*Defer[Int][E^(x/E^((2 + x + 2*x^2 - Log[4])/
x) - (2 + x + 2*x^2 - Log[4])/x)*x, x] - Defer[Int][2^(1 + 2/x)*E^(-1 + E^4 - 2/x - 2*x + 4^x^(-1)*E^(-1 - 2/x
- 2*x)*x)*x^2, x] - Defer[Int][E^(x/E^((2 + x + 2*x^2 - Log[4])/x) - (2 + x + 2*x^2 - Log[4])/x)*x^2, x] - 2*
Defer[Int][E^(x/E^((2 + x + 2*x^2 - Log[4])/x) - (2 + x + 2*x^2 - Log[4])/x)*x^3, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 31, normalized size = 0.97
Antiderivative was successfully verified.
[In]
Integrate[E^(x/E^((2 + x + 2*x^2 - Log[4])/x) - (2 + x + 2*x^2 - Log[4])/x)*(2 + 3*x - x^2 - 2*x^3 + E^((2 + x
+ 2*x^2 - Log[4])/x)*(1 + 2*x) + E^E^4*(2 + E^((2 + x + 2*x^2 - Log[4])/x) + x - 2*x^2 - Log[4]) + (-1 - x)*L
og[4]),x]
[Out]
E^(4^x^(-1)*E^(-1 - 2/x - 2*x)*x)*x*(1 + E^E^4 + x)
________________________________________________________________________________________
fricas [B] time = 0.96, size = 69, normalized size = 2.16
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((exp((-2*log(2)+2*x^2+x+2)/x)-2*log(2)-2*x^2+x+2)*exp(exp(4))+(2*x+1)*exp((-2*log(2)+2*x^2+x+2)/x)+
2*(-x-1)*log(2)-2*x^3-x^2+3*x+2)*exp(x/exp((-2*log(2)+2*x^2+x+2)/x))/exp((-2*log(2)+2*x^2+x+2)/x),x, algorithm
="fricas")
[Out]
(x^2 + x*e^(e^4) + x)*e^((x^2*e^(-(2*x^2 + x - 2*log(2) + 2)/x) - 2*x^2 - x + 2*log(2) - 2)/x + (2*x^2 + x - 2
*log(2) + 2)/x)
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((exp((-2*log(2)+2*x^2+x+2)/x)-2*log(2)-2*x^2+x+2)*exp(exp(4))+(2*x+1)*exp((-2*log(2)+2*x^2+x+2)/x)+
2*(-x-1)*log(2)-2*x^3-x^2+3*x+2)*exp(x/exp((-2*log(2)+2*x^2+x+2)/x))/exp((-2*log(2)+2*x^2+x+2)/x),x, algorithm
="giac")
[Out]
integrate(-(2*x^3 + x^2 - (2*x + 1)*e^((2*x^2 + x - 2*log(2) + 2)/x) + (2*x^2 - x - e^((2*x^2 + x - 2*log(2) +
2)/x) + 2*log(2) - 2)*e^(e^4) + 2*(x + 1)*log(2) - 3*x - 2)*e^(x*e^(-(2*x^2 + x - 2*log(2) + 2)/x) - (2*x^2 +
x - 2*log(2) + 2)/x), x)
________________________________________________________________________________________
maple [A] time = 0.28, size = 31, normalized size = 0.97
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((exp((-2*ln(2)+2*x^2+x+2)/x)-2*ln(2)-2*x^2+x+2)*exp(exp(4))+(2*x+1)*exp((-2*ln(2)+2*x^2+x+2)/x)+2*(-x-1)*
ln(2)-2*x^3-x^2+3*x+2)*exp(x/exp((-2*ln(2)+2*x^2+x+2)/x))/exp((-2*ln(2)+2*x^2+x+2)/x),x,method=_RETURNVERBOSE)
[Out]
x*(exp(exp(4))+x+1)*exp(x*exp((-2*x^2+2*ln(2)-x-2)/x))
________________________________________________________________________________________
maxima [A] time = 0.55, size = 33, normalized size = 1.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((exp((-2*log(2)+2*x^2+x+2)/x)-2*log(2)-2*x^2+x+2)*exp(exp(4))+(2*x+1)*exp((-2*log(2)+2*x^2+x+2)/x)+
2*(-x-1)*log(2)-2*x^3-x^2+3*x+2)*exp(x/exp((-2*log(2)+2*x^2+x+2)/x))/exp((-2*log(2)+2*x^2+x+2)/x),x, algorithm
="maxima")
[Out]
(x^2 + x*(e^(e^4) + 1))*e^(x*e^(-2*x + 2*log(2)/x - 2/x - 1))
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(exp(-(x - 2*log(2) + 2*x^2 + 2)/x)*exp(x*exp(-(x - 2*log(2) + 2*x^2 + 2)/x))*(3*x + exp((x - 2*log(2) + 2*
x^2 + 2)/x)*(2*x + 1) + exp(exp(4))*(x - 2*log(2) + exp((x - 2*log(2) + 2*x^2 + 2)/x) - 2*x^2 + 2) - 2*log(2)*
(x + 1) - x^2 - 2*x^3 + 2),x)
[Out]
int(exp(-(x - 2*log(2) + 2*x^2 + 2)/x)*exp(x*exp(-(x - 2*log(2) + 2*x^2 + 2)/x))*(3*x + exp((x - 2*log(2) + 2*
x^2 + 2)/x)*(2*x + 1) + exp(exp(4))*(x - 2*log(2) + exp((x - 2*log(2) + 2*x^2 + 2)/x) - 2*x^2 + 2) - 2*log(2)*
(x + 1) - x^2 - 2*x^3 + 2), x)
________________________________________________________________________________________
sympy [A] time = 3.07, size = 31, normalized size = 0.97
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((exp((-2*ln(2)+2*x**2+x+2)/x)-2*ln(2)-2*x**2+x+2)*exp(exp(4))+(2*x+1)*exp((-2*ln(2)+2*x**2+x+2)/x)+
2*(-x-1)*ln(2)-2*x**3-x**2+3*x+2)*exp(x/exp((-2*ln(2)+2*x**2+x+2)/x))/exp((-2*ln(2)+2*x**2+x+2)/x),x)
[Out]
(x**2 + x + x*exp(exp(4)))*exp(x*exp(-(2*x**2 + x - 2*log(2) + 2)/x))
________________________________________________________________________________________