3.17.93 ee2+x+2x2log(4)xx2+x+2x2log(4)x(2+3xx22x3+e2+x+2x2log(4)x(1+2x)+ee4(2+e2+x+2x2log(4)x+x2x2log(4))+(1x)log(4))dx

Optimal. Leaf size=32 ee2x2+xlog(4)xxx(1+ee4+x)

________________________________________________________________________________________

Rubi [F]  time = 26.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)(2+3xx22x3+e2+x+2x2log(4)x(1+2x)+ee4(2+e2+x+2x2log(4)x+x2x2log(4))+(1x)log(4))dx

Verification is not applicable to the result.

[In]

Int[E^(x/E^((2 + x + 2*x^2 - Log[4])/x) - (2 + x + 2*x^2 - Log[4])/x)*(2 + 3*x - x^2 - 2*x^3 + E^((2 + x + 2*x
^2 - Log[4])/x)*(1 + 2*x) + E^E^4*(2 + E^((2 + x + 2*x^2 - Log[4])/x) + x - 2*x^2 - Log[4]) + (-1 - x)*Log[4])
,x]

[Out]

Defer[Int][E^(4^x^(-1)*E^(-1 - 2/x - 2*x)*x), x] + Defer[Int][E^(E^4 + 4^x^(-1)*E^(-1 - 2/x - 2*x)*x), x] + (1
 - Log[2])*Defer[Int][2^(1 + 2/x)*E^(-1 + E^4 - 2/x - 2*x + 4^x^(-1)*E^(-1 - 2/x - 2*x)*x), x] + 2*Defer[Int][
E^(x/E^((2 + x + 2*x^2 - Log[4])/x) - (2 + x + 2*x^2 - Log[4])/x), x] - Log[4]*Defer[Int][E^(x/E^((2 + x + 2*x
^2 - Log[4])/x) - (2 + x + 2*x^2 - Log[4])/x), x] + 2*Defer[Int][E^(4^x^(-1)*E^(-1 - 2/x - 2*x)*x)*x, x] + Def
er[Int][4^x^(-1)*E^(-1 + E^4 - 2/x - 2*x + 4^x^(-1)*E^(-1 - 2/x - 2*x)*x)*x, x] + 3*Defer[Int][E^(x/E^((2 + x
+ 2*x^2 - Log[4])/x) - (2 + x + 2*x^2 - Log[4])/x)*x, x] - Log[4]*Defer[Int][E^(x/E^((2 + x + 2*x^2 - Log[4])/
x) - (2 + x + 2*x^2 - Log[4])/x)*x, x] - Defer[Int][2^(1 + 2/x)*E^(-1 + E^4 - 2/x - 2*x + 4^x^(-1)*E^(-1 - 2/x
 - 2*x)*x)*x^2, x] - Defer[Int][E^(x/E^((2 + x + 2*x^2 - Log[4])/x) - (2 + x + 2*x^2 - Log[4])/x)*x^2, x] - 2*
Defer[Int][E^(x/E^((2 + x + 2*x^2 - Log[4])/x) - (2 + x + 2*x^2 - Log[4])/x)*x^3, x]

Rubi steps

integral=(2exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)+3exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)xexp(e2+x+2x2log(4)xx2+x+2x2log(4)x)x22exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)x3+41/xexp(1+2x+2x+e2+x+2x2log(4)xx2+x+2x2log(4)x)(1+2x)+22/xexp(e4+e2+x+2x2log(4)xx2+x+2x2log(4)x)(e1+2x+2x+22/xx21+2xx2+21+2x(1log(2)))exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)(1+x)log(4))dx=2exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)dx2exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)x3dx+3exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)xdxlog(4)exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)(1+x)dxexp(e2+x+2x2log(4)xx2+x+2x2log(4)x)x2dx+41/xexp(1+2x+2x+e2+x+2x2log(4)xx2+x+2x2log(4)x)(1+2x)dx+22/xexp(e4+e2+x+2x2log(4)xx2+x+2x2log(4)x)(e1+2x+2x+22/xx21+2xx2+21+2x(1log(2)))dx=2exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)dx2exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)x3dx+3exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)xdxlog(4)(exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)+exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)x)dxexp(e2+x+2x2log(4)xx2+x+2x2log(4)x)x2dx+e41xe12x2xx(1+2x)dx+e1+e42x2x+41xe12x2xx(e1+2x+2x+41x(2+x2x2log(4)))dx=2exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)dx2exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)x3dx+3exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)xdxlog(4)exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)dxlog(4)exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)xdxexp(e2+x+2x2log(4)xx2+x+2x2log(4)x)x2dx+(e41xe12x2xx+2e41xe12x2xxx)dx+(ee4+41xe12x2xx41xe1+e42x2x+41xe12x2xx(2x+2x2+log(4)))dx=2exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)dx+2e41xe12x2xxxdx2exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)x3dx+3exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)xdxlog(4)exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)dxlog(4)exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)xdx+e41xe12x2xxdx+ee4+41xe12x2xxdxexp(e2+x+2x2log(4)xx2+x+2x2log(4)x)x2dx41xe1+e42x2x+41xe12x2xx(2x+2x2+log(4))dx=2exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)dx+2e41xe12x2xxxdx2exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)x3dx+3exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)xdxlog(4)exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)dxlog(4)exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)xdx+e41xe12x2xxdx+ee4+41xe12x2xxdxexp(e2+x+2x2log(4)xx2+x+2x2log(4)x)x2dx(41xe1+e42x2x+41xe12x2xxx+21+2xe1+e42x2x+41xe12x2xxx221+2xe1+e42x2x+41xe12x2xx(1log(2)))dx=2exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)dx+2e41xe12x2xxxdx2exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)x3dx+3exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)xdx(1+log(2))21+2xe1+e42x2x+41xe12x2xxdxlog(4)exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)dxlog(4)exp(e2+x+2x2log(4)xx2+x+2x2log(4)x)xdx+e41xe12x2xxdx+ee4+41xe12x2xxdx+41xe1+e42x2x+41xe12x2xxxdx21+2xe1+e42x2x+41xe12x2xxx2dxexp(e2+x+2x2log(4)xx2+x+2x2log(4)x)x2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.19, size = 31, normalized size = 0.97 e41xe12x2xxx(1+ee4+x)

Antiderivative was successfully verified.

[In]

Integrate[E^(x/E^((2 + x + 2*x^2 - Log[4])/x) - (2 + x + 2*x^2 - Log[4])/x)*(2 + 3*x - x^2 - 2*x^3 + E^((2 + x
 + 2*x^2 - Log[4])/x)*(1 + 2*x) + E^E^4*(2 + E^((2 + x + 2*x^2 - Log[4])/x) + x - 2*x^2 - Log[4]) + (-1 - x)*L
og[4]),x]

[Out]

E^(4^x^(-1)*E^(-1 - 2/x - 2*x)*x)*x*(1 + E^E^4 + x)

________________________________________________________________________________________

fricas [B]  time = 0.96, size = 69, normalized size = 2.16 (x2+xe(e4)+x)e(x2e(2x2+x2log(2)+2x)2x2x+2log(2)2x+2x2+x2log(2)+2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((exp((-2*log(2)+2*x^2+x+2)/x)-2*log(2)-2*x^2+x+2)*exp(exp(4))+(2*x+1)*exp((-2*log(2)+2*x^2+x+2)/x)+
2*(-x-1)*log(2)-2*x^3-x^2+3*x+2)*exp(x/exp((-2*log(2)+2*x^2+x+2)/x))/exp((-2*log(2)+2*x^2+x+2)/x),x, algorithm
="fricas")

[Out]

(x^2 + x*e^(e^4) + x)*e^((x^2*e^(-(2*x^2 + x - 2*log(2) + 2)/x) - 2*x^2 - x + 2*log(2) - 2)/x + (2*x^2 + x - 2
*log(2) + 2)/x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 (2x3+x2(2x+1)e(2x2+x2log(2)+2x)+(2x2xe(2x2+x2log(2)+2x)+2log(2)2)e(e4)+2(x+1)log(2)3x2)e(xe(2x2+x2log(2)+2x)2x2+x2log(2)+2x)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((exp((-2*log(2)+2*x^2+x+2)/x)-2*log(2)-2*x^2+x+2)*exp(exp(4))+(2*x+1)*exp((-2*log(2)+2*x^2+x+2)/x)+
2*(-x-1)*log(2)-2*x^3-x^2+3*x+2)*exp(x/exp((-2*log(2)+2*x^2+x+2)/x))/exp((-2*log(2)+2*x^2+x+2)/x),x, algorithm
="giac")

[Out]

integrate(-(2*x^3 + x^2 - (2*x + 1)*e^((2*x^2 + x - 2*log(2) + 2)/x) + (2*x^2 - x - e^((2*x^2 + x - 2*log(2) +
 2)/x) + 2*log(2) - 2)*e^(e^4) + 2*(x + 1)*log(2) - 3*x - 2)*e^(x*e^(-(2*x^2 + x - 2*log(2) + 2)/x) - (2*x^2 +
 x - 2*log(2) + 2)/x), x)

________________________________________________________________________________________

maple [A]  time = 0.28, size = 31, normalized size = 0.97




method result size



risch x(ee4+x+1)exe2x2+2ln(2)x2x 31
norman (x2e2ln(2)+2x2+x+2xexe2ln(2)+2x2+x+2x+(ee4+1)xe2ln(2)+2x2+x+2xexe2ln(2)+2x2+x+2x)e2ln(2)+2x2+x+2x 111



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((exp((-2*ln(2)+2*x^2+x+2)/x)-2*ln(2)-2*x^2+x+2)*exp(exp(4))+(2*x+1)*exp((-2*ln(2)+2*x^2+x+2)/x)+2*(-x-1)*
ln(2)-2*x^3-x^2+3*x+2)*exp(x/exp((-2*ln(2)+2*x^2+x+2)/x))/exp((-2*ln(2)+2*x^2+x+2)/x),x,method=_RETURNVERBOSE)

[Out]

x*(exp(exp(4))+x+1)*exp(x*exp((-2*x^2+2*ln(2)-x-2)/x))

________________________________________________________________________________________

maxima [A]  time = 0.55, size = 33, normalized size = 1.03 (x2+x(e(e4)+1))e(xe(2x+2log(2)x2x1))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((exp((-2*log(2)+2*x^2+x+2)/x)-2*log(2)-2*x^2+x+2)*exp(exp(4))+(2*x+1)*exp((-2*log(2)+2*x^2+x+2)/x)+
2*(-x-1)*log(2)-2*x^3-x^2+3*x+2)*exp(x/exp((-2*log(2)+2*x^2+x+2)/x))/exp((-2*log(2)+2*x^2+x+2)/x),x, algorithm
="maxima")

[Out]

(x^2 + x*(e^(e^4) + 1))*e^(x*e^(-2*x + 2*log(2)/x - 2/x - 1))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 e2x2+x2ln(2)+2xexe2x2+x2ln(2)+2x(3x+e2x2+x2ln(2)+2x(2x+1)+ee4(x2ln(2)+e2x2+x2ln(2)+2x2x2+2)2ln(2)(x+1)x22x3+2)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(-(x - 2*log(2) + 2*x^2 + 2)/x)*exp(x*exp(-(x - 2*log(2) + 2*x^2 + 2)/x))*(3*x + exp((x - 2*log(2) + 2*
x^2 + 2)/x)*(2*x + 1) + exp(exp(4))*(x - 2*log(2) + exp((x - 2*log(2) + 2*x^2 + 2)/x) - 2*x^2 + 2) - 2*log(2)*
(x + 1) - x^2 - 2*x^3 + 2),x)

[Out]

int(exp(-(x - 2*log(2) + 2*x^2 + 2)/x)*exp(x*exp(-(x - 2*log(2) + 2*x^2 + 2)/x))*(3*x + exp((x - 2*log(2) + 2*
x^2 + 2)/x)*(2*x + 1) + exp(exp(4))*(x - 2*log(2) + exp((x - 2*log(2) + 2*x^2 + 2)/x) - 2*x^2 + 2) - 2*log(2)*
(x + 1) - x^2 - 2*x^3 + 2), x)

________________________________________________________________________________________

sympy [A]  time = 3.07, size = 31, normalized size = 0.97 (x2+x+xee4)exe2x2+x2log(2)+2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((exp((-2*ln(2)+2*x**2+x+2)/x)-2*ln(2)-2*x**2+x+2)*exp(exp(4))+(2*x+1)*exp((-2*ln(2)+2*x**2+x+2)/x)+
2*(-x-1)*ln(2)-2*x**3-x**2+3*x+2)*exp(x/exp((-2*ln(2)+2*x**2+x+2)/x))/exp((-2*ln(2)+2*x**2+x+2)/x),x)

[Out]

(x**2 + x + x*exp(exp(4)))*exp(x*exp(-(2*x**2 + x - 2*log(2) + 2)/x))

________________________________________________________________________________________