Optimal. Leaf size=27 \[ \frac {-4 e^{-\frac {x}{4}+x^3}+x^2}{16-e^x} \]
________________________________________________________________________________________
Rubi [F] time = 2.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {128 x+e^x \left (-8 x+4 x^2\right )+e^{\frac {1}{4} \left (-x+4 x^3+4 \log (4)\right )} \left (16-192 x^2+e^x \left (-5+12 x^2\right )\right )}{1024-128 e^x+4 e^{2 x}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {128 x+e^x \left (-8 x+4 x^2\right )+e^{\frac {1}{4} \left (-x+4 x^3+4 \log (4)\right )} \left (16-192 x^2+e^x \left (-5+12 x^2\right )\right )}{4 \left (16-e^x\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {128 x+e^x \left (-8 x+4 x^2\right )+e^{\frac {1}{4} \left (-x+4 x^3+4 \log (4)\right )} \left (16-192 x^2+e^x \left (-5+12 x^2\right )\right )}{\left (16-e^x\right )^2} \, dx\\ &=\frac {1}{4} \int \left (\frac {128 x}{\left (-16+e^x\right )^2}+\frac {4 e^x (-2+x) x}{\left (-16+e^x\right )^2}+\frac {4 e^{-\frac {x}{4}+x^3} \left (16-5 e^x-192 x^2+12 e^x x^2\right )}{\left (-16+e^x\right )^2}\right ) \, dx\\ &=32 \int \frac {x}{\left (-16+e^x\right )^2} \, dx+\int \frac {e^x (-2+x) x}{\left (-16+e^x\right )^2} \, dx+\int \frac {e^{-\frac {x}{4}+x^3} \left (16-5 e^x-192 x^2+12 e^x x^2\right )}{\left (-16+e^x\right )^2} \, dx\\ &=2 \int \frac {e^x x}{\left (-16+e^x\right )^2} \, dx-2 \int \frac {x}{-16+e^x} \, dx+\int \left (-\frac {2 e^x x}{\left (-16+e^x\right )^2}+\frac {e^x x^2}{\left (-16+e^x\right )^2}\right ) \, dx+\int \left (-\frac {64 e^{-\frac {x}{4}+x^3}}{\left (-16+e^x\right )^2}+\frac {e^{-\frac {x}{4}+x^3} \left (-5+12 x^2\right )}{-16+e^x}\right ) \, dx\\ &=\frac {2 x}{16-e^x}+\frac {x^2}{16}-\frac {1}{8} \int \frac {e^x x}{-16+e^x} \, dx+2 \int \frac {1}{-16+e^x} \, dx-2 \int \frac {e^x x}{\left (-16+e^x\right )^2} \, dx-64 \int \frac {e^{-\frac {x}{4}+x^3}}{\left (-16+e^x\right )^2} \, dx+\int \frac {e^x x^2}{\left (-16+e^x\right )^2} \, dx+\int \frac {e^{-\frac {x}{4}+x^3} \left (-5+12 x^2\right )}{-16+e^x} \, dx\\ &=\frac {x^2}{16}+\frac {x^2}{16-e^x}-\frac {1}{8} x \log \left (1-\frac {e^x}{16}\right )+\frac {1}{8} \int \log \left (1-\frac {e^x}{16}\right ) \, dx-2 \int \frac {1}{-16+e^x} \, dx+2 \int \frac {x}{-16+e^x} \, dx+2 \operatorname {Subst}\left (\int \frac {1}{(-16+x) x} \, dx,x,e^x\right )-256 \operatorname {Subst}\left (\int \frac {e^{x \left (-1+64 x^2\right )}}{\left (-16+e^{4 x}\right )^2} \, dx,x,\frac {x}{4}\right )+\int \left (-\frac {5 e^{-\frac {x}{4}+x^3}}{-16+e^x}+\frac {12 e^{-\frac {x}{4}+x^3} x^2}{-16+e^x}\right ) \, dx\\ &=\frac {x^2}{16-e^x}-\frac {1}{8} x \log \left (1-\frac {e^x}{16}\right )+\frac {1}{8} \int \frac {e^x x}{-16+e^x} \, dx+\frac {1}{8} \operatorname {Subst}\left (\int \frac {1}{-16+x} \, dx,x,e^x\right )-\frac {1}{8} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )+\frac {1}{8} \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {x}{16}\right )}{x} \, dx,x,e^x\right )-2 \operatorname {Subst}\left (\int \frac {1}{(-16+x) x} \, dx,x,e^x\right )-5 \int \frac {e^{-\frac {x}{4}+x^3}}{-16+e^x} \, dx+12 \int \frac {e^{-\frac {x}{4}+x^3} x^2}{-16+e^x} \, dx-256 \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{\left (16-e^{4 x}\right )^2} \, dx,x,\frac {x}{4}\right )\\ &=-\frac {x}{8}+\frac {x^2}{16-e^x}+\frac {1}{8} \log \left (16-e^x\right )-\frac {\text {Li}_2\left (\frac {e^x}{16}\right )}{8}-\frac {1}{8} \int \log \left (1-\frac {e^x}{16}\right ) \, dx-\frac {1}{8} \operatorname {Subst}\left (\int \frac {1}{-16+x} \, dx,x,e^x\right )+\frac {1}{8} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )+12 \int \frac {e^{-\frac {x}{4}+x^3} x^2}{-16+e^x} \, dx-20 \operatorname {Subst}\left (\int \frac {e^{x \left (-1+64 x^2\right )}}{-16+e^{4 x}} \, dx,x,\frac {x}{4}\right )-256 \operatorname {Subst}\left (\int \left (\frac {e^{-x+64 x^3}}{1024 \left (-2+e^x\right )^2}-\frac {3 e^{-x+64 x^3}}{2048 \left (-2+e^x\right )}+\frac {e^{-x+64 x^3}}{1024 \left (2+e^x\right )^2}+\frac {3 e^{-x+64 x^3}}{2048 \left (2+e^x\right )}+\frac {e^{-x+64 x^3}}{64 \left (4+e^{2 x}\right )^2}+\frac {e^{-x+64 x^3}}{256 \left (4+e^{2 x}\right )}\right ) \, dx,x,\frac {x}{4}\right )\\ &=\frac {x^2}{16-e^x}-\frac {\text {Li}_2\left (\frac {e^x}{16}\right )}{8}-\frac {1}{8} \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {x}{16}\right )}{x} \, dx,x,e^x\right )-\frac {1}{4} \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{\left (-2+e^x\right )^2} \, dx,x,\frac {x}{4}\right )-\frac {1}{4} \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{\left (2+e^x\right )^2} \, dx,x,\frac {x}{4}\right )+\frac {3}{8} \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{-2+e^x} \, dx,x,\frac {x}{4}\right )-\frac {3}{8} \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{2+e^x} \, dx,x,\frac {x}{4}\right )-4 \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{\left (4+e^{2 x}\right )^2} \, dx,x,\frac {x}{4}\right )+12 \int \frac {e^{-\frac {x}{4}+x^3} x^2}{-16+e^x} \, dx-20 \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{-16+e^{4 x}} \, dx,x,\frac {x}{4}\right )-\operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{4+e^{2 x}} \, dx,x,\frac {x}{4}\right )\\ &=\frac {x^2}{16-e^x}-\frac {1}{4} \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{\left (-2+e^x\right )^2} \, dx,x,\frac {x}{4}\right )-\frac {1}{4} \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{\left (2+e^x\right )^2} \, dx,x,\frac {x}{4}\right )+\frac {3}{8} \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{-2+e^x} \, dx,x,\frac {x}{4}\right )-\frac {3}{8} \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{2+e^x} \, dx,x,\frac {x}{4}\right )-4 \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{\left (4+e^{2 x}\right )^2} \, dx,x,\frac {x}{4}\right )+12 \int \frac {e^{-\frac {x}{4}+x^3} x^2}{-16+e^x} \, dx-20 \operatorname {Subst}\left (\int \left (\frac {e^{-x+64 x^3}}{32 \left (-2+e^x\right )}-\frac {e^{-x+64 x^3}}{32 \left (2+e^x\right )}-\frac {e^{-x+64 x^3}}{8 \left (4+e^{2 x}\right )}\right ) \, dx,x,\frac {x}{4}\right )-\operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{4+e^{2 x}} \, dx,x,\frac {x}{4}\right )\\ &=\frac {x^2}{16-e^x}-\frac {1}{4} \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{\left (-2+e^x\right )^2} \, dx,x,\frac {x}{4}\right )-\frac {1}{4} \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{\left (2+e^x\right )^2} \, dx,x,\frac {x}{4}\right )+\frac {3}{8} \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{-2+e^x} \, dx,x,\frac {x}{4}\right )-\frac {3}{8} \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{2+e^x} \, dx,x,\frac {x}{4}\right )-\frac {5}{8} \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{-2+e^x} \, dx,x,\frac {x}{4}\right )+\frac {5}{8} \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{2+e^x} \, dx,x,\frac {x}{4}\right )+\frac {5}{2} \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{4+e^{2 x}} \, dx,x,\frac {x}{4}\right )-4 \operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{\left (4+e^{2 x}\right )^2} \, dx,x,\frac {x}{4}\right )+12 \int \frac {e^{-\frac {x}{4}+x^3} x^2}{-16+e^x} \, dx-\operatorname {Subst}\left (\int \frac {e^{-x+64 x^3}}{4+e^{2 x}} \, dx,x,\frac {x}{4}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.69, size = 30, normalized size = 1.11 \begin {gather*} -\frac {4 e^{-\frac {x}{4}+x^3}-x^2}{16-e^x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 26, normalized size = 0.96 \begin {gather*} -\frac {x^{2} - e^{\left (x^{3} - \frac {1}{4} \, x + 2 \, \log \relax (2)\right )}}{e^{x} - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.51, size = 30, normalized size = 1.11 \begin {gather*} -\frac {x^{2} e^{x} - 4 \, e^{\left (x^{3} + \frac {3}{4} \, x\right )}}{e^{\left (2 \, x\right )} - 16 \, e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 26, normalized size = 0.96
method | result | size |
norman | \(\frac {-x^{2}+{\mathrm e}^{2 \ln \relax (2)+x^{3}-\frac {x}{4}}}{{\mathrm e}^{x}-16}\) | \(26\) |
risch | \(-\frac {x^{2}}{{\mathrm e}^{x}-16}+\frac {4 \,{\mathrm e}^{\frac {x \left (2 x -1\right ) \left (2 x +1\right )}{4}}}{{\mathrm e}^{x}-16}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 11, normalized size = 0.41 \begin {gather*} -\frac {x^{2}}{e^{x} - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.22, size = 23, normalized size = 0.85 \begin {gather*} \frac {4\,{\mathrm {e}}^{x^3-\frac {x}{4}}-x^2}{{\mathrm {e}}^x-16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.28, size = 22, normalized size = 0.81 \begin {gather*} - \frac {x^{2}}{e^{x} - 16} + \frac {4 e^{x^{3} - \frac {x}{4}}}{e^{x} - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________