Optimal. Leaf size=29 \[ \frac {3 \left (2+3 x-4 \left (-9+\frac {2+x}{3-e}\right )\right )}{4-x} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 21, normalized size of antiderivative = 0.72, number of steps used = 5, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {12, 1981, 27, 32} \begin {gather*} \frac {6 (63-25 e)}{(3-e) (4-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 32
Rule 1981
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left ((6 (63-25 e)) \int \frac {1}{-48+24 x-3 x^2+e \left (16-8 x+x^2\right )} \, dx\right )\\ &=-\left ((6 (63-25 e)) \int \frac {1}{-16 (3-e)+8 (3-e) x-(3-e) x^2} \, dx\right )\\ &=-\left ((6 (63-25 e)) \int \frac {1}{(-3+e) (-4+x)^2} \, dx\right )\\ &=\frac {(6 (63-25 e)) \int \frac {1}{(-4+x)^2} \, dx}{3-e}\\ &=\frac {6 (63-25 e)}{(3-e) (4-x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 17, normalized size = 0.59 \begin {gather*} -\frac {6 (-63+25 e)}{(-3+e) (-4+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 21, normalized size = 0.72 \begin {gather*} -\frac {6 \, {\left (25 \, e - 63\right )}}{{\left (x - 4\right )} e - 3 \, x + 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 19, normalized size = 0.66 \begin {gather*} -\frac {6 \, {\left (25 \, e - 63\right )}}{{\left (x - 4\right )} {\left (e - 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.34, size = 20, normalized size = 0.69
method | result | size |
default | \(-\frac {150 \,{\mathrm e}-378}{\left ({\mathrm e}-3\right ) \left (x -4\right )}\) | \(20\) |
norman | \(-\frac {6 \left (25 \,{\mathrm e}-63\right )}{\left ({\mathrm e}-3\right ) \left (x -4\right )}\) | \(20\) |
gosper | \(-\frac {6 \left (25 \,{\mathrm e}-63\right )}{x \,{\mathrm e}-4 \,{\mathrm e}-3 x +12}\) | \(24\) |
meijerg | \(-\frac {189 x}{8 \left ({\mathrm e}-3\right ) \left (-\frac {x}{4}+1\right )}+\frac {75 \,{\mathrm e} x}{8 \left ({\mathrm e}-3\right ) \left (-\frac {x}{4}+1\right )}\) | \(36\) |
risch | \(-\frac {150 \,{\mathrm e}}{x \,{\mathrm e}-4 \,{\mathrm e}-3 x +12}+\frac {378}{x \,{\mathrm e}-4 \,{\mathrm e}-3 x +12}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 22, normalized size = 0.76 \begin {gather*} -\frac {6 \, {\left (25 \, e - 63\right )}}{x {\left (e - 3\right )} - 4 \, e + 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.09, size = 19, normalized size = 0.66 \begin {gather*} -\frac {6\,\left (25\,\mathrm {e}-63\right )}{\left (\mathrm {e}-3\right )\,\left (x-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 20, normalized size = 0.69 \begin {gather*} - \frac {-378 + 150 e}{x \left (-3 + e\right ) - 4 e + 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________