Optimal. Leaf size=30 \[ \frac {-3+e^{-5+x} \left (e^{1-x}-x^2\right ) \log (x)}{\log (e+x)} \]
________________________________________________________________________________________
Rubi [F] time = 5.81, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3 x+e^{-5+x} \left (-e^{1-x} x+x^3\right ) \log (x)+\left (e^{-5+x} \left (-e x^2-x^3+e^{1-x} (e+x)\right )+e^{-5+x} \left (-2 x^3-x^4+e \left (-2 x^2-x^3\right )\right ) \log (x)\right ) \log (e+x)}{\left (e x+x^2\right ) \log ^2(e+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 x+e^{-5+x} \left (-e^{1-x} x+x^3\right ) \log (x)+\left (e^{-5+x} \left (-e x^2-x^3+e^{1-x} (e+x)\right )+e^{-5+x} \left (-2 x^3-x^4+e \left (-2 x^2-x^3\right )\right ) \log (x)\right ) \log (e+x)}{x (e+x) \log ^2(e+x)} \, dx\\ &=\int \frac {3 e^5 x+(e+x) \left (e-e^x x^2\right ) \log (e+x)-x \log (x) \left (e-e^x x^2+e^x x (2+x) (e+x) \log (e+x)\right )}{e^5 x (e+x) \log ^2(e+x)} \, dx\\ &=\frac {\int \frac {3 e^5 x+(e+x) \left (e-e^x x^2\right ) \log (e+x)-x \log (x) \left (e-e^x x^2+e^x x (2+x) (e+x) \log (e+x)\right )}{x (e+x) \log ^2(e+x)} \, dx}{e^5}\\ &=\frac {\int \left (\frac {e \left (3 e^4 x-x \log (x)+e \log (e+x)+x \log (e+x)\right )}{x (e+x) \log ^2(e+x)}+\frac {e^x x \left (x \log (x)-e \log (e+x)-x \log (e+x)-2 e \log (x) \log (e+x)-2 \left (1+\frac {e}{2}\right ) x \log (x) \log (e+x)-x^2 \log (x) \log (e+x)\right )}{(e+x) \log ^2(e+x)}\right ) \, dx}{e^5}\\ &=\frac {\int \frac {e^x x \left (x \log (x)-e \log (e+x)-x \log (e+x)-2 e \log (x) \log (e+x)-2 \left (1+\frac {e}{2}\right ) x \log (x) \log (e+x)-x^2 \log (x) \log (e+x)\right )}{(e+x) \log ^2(e+x)} \, dx}{e^5}+\frac {\int \frac {3 e^4 x-x \log (x)+e \log (e+x)+x \log (e+x)}{x (e+x) \log ^2(e+x)} \, dx}{e^4}\\ &=\frac {\int \frac {e^x x (-((e+x) \log (e+x))-\log (x) (-x+(2+x) (e+x) \log (e+x)))}{(e+x) \log ^2(e+x)} \, dx}{e^5}+\frac {\int \left (\frac {3 e^4-\log (x)}{(e+x) \log ^2(e+x)}+\frac {1}{x \log (e+x)}\right ) \, dx}{e^4}\\ &=\frac {\int \left (\frac {e^x x^2 \log (x)}{(e+x) \log ^2(e+x)}-\frac {e^x x (1+2 \log (x)+x \log (x))}{\log (e+x)}\right ) \, dx}{e^5}+\frac {\int \frac {3 e^4-\log (x)}{(e+x) \log ^2(e+x)} \, dx}{e^4}+\frac {\int \frac {1}{x \log (e+x)} \, dx}{e^4}\\ &=\frac {\int \frac {e^x x^2 \log (x)}{(e+x) \log ^2(e+x)} \, dx}{e^5}-\frac {\int \frac {e^x x (1+2 \log (x)+x \log (x))}{\log (e+x)} \, dx}{e^5}+\frac {\int \frac {1}{x \log (e+x)} \, dx}{e^4}+\frac {\operatorname {Subst}\left (\int \frac {3 e^4-\log (-e+x)}{x \log ^2(x)} \, dx,x,e+x\right )}{e^4}\\ &=\frac {\int \left (-\frac {e^{1+x} \log (x)}{\log ^2(e+x)}+\frac {e^x x \log (x)}{\log ^2(e+x)}+\frac {e^{2+x} \log (x)}{(e+x) \log ^2(e+x)}\right ) \, dx}{e^5}-\frac {\int \left (\frac {e^x x}{\log (e+x)}+\frac {2 e^x x \log (x)}{\log (e+x)}+\frac {e^x x^2 \log (x)}{\log (e+x)}\right ) \, dx}{e^5}+\frac {\int \frac {1}{x \log (e+x)} \, dx}{e^4}+\frac {\operatorname {Subst}\left (\int \frac {3 e^4-\log (-e+x)}{x \log ^2(x)} \, dx,x,e+x\right )}{e^4}\\ &=-\frac {\int \frac {e^{1+x} \log (x)}{\log ^2(e+x)} \, dx}{e^5}+\frac {\int \frac {e^x x \log (x)}{\log ^2(e+x)} \, dx}{e^5}+\frac {\int \frac {e^{2+x} \log (x)}{(e+x) \log ^2(e+x)} \, dx}{e^5}-\frac {\int \frac {e^x x}{\log (e+x)} \, dx}{e^5}-\frac {\int \frac {e^x x^2 \log (x)}{\log (e+x)} \, dx}{e^5}-\frac {2 \int \frac {e^x x \log (x)}{\log (e+x)} \, dx}{e^5}+\frac {\int \frac {1}{x \log (e+x)} \, dx}{e^4}+\frac {\operatorname {Subst}\left (\int \frac {3 e^4-\log (-e+x)}{x \log ^2(x)} \, dx,x,e+x\right )}{e^4}\\ &=-\frac {\int \left (-\frac {e^{1+x}}{\log (e+x)}+\frac {e^x (e+x)}{\log (e+x)}\right ) \, dx}{e^5}-\frac {\int \frac {e^{1+x} \log (x)}{\log ^2(e+x)} \, dx}{e^5}+\frac {\int \frac {e^x x \log (x)}{\log ^2(e+x)} \, dx}{e^5}+\frac {\int \frac {e^{2+x} \log (x)}{(e+x) \log ^2(e+x)} \, dx}{e^5}-\frac {\int \frac {e^x x^2 \log (x)}{\log (e+x)} \, dx}{e^5}-\frac {2 \int \frac {e^x x \log (x)}{\log (e+x)} \, dx}{e^5}+\frac {\int \frac {1}{x \log (e+x)} \, dx}{e^4}+\frac {\operatorname {Subst}\left (\int \frac {3 e^4-\log (-e+x)}{x \log ^2(x)} \, dx,x,e+x\right )}{e^4}\\ &=-\frac {\int \frac {e^{1+x} \log (x)}{\log ^2(e+x)} \, dx}{e^5}+\frac {\int \frac {e^x x \log (x)}{\log ^2(e+x)} \, dx}{e^5}+\frac {\int \frac {e^{2+x} \log (x)}{(e+x) \log ^2(e+x)} \, dx}{e^5}+\frac {\int \frac {e^{1+x}}{\log (e+x)} \, dx}{e^5}-\frac {\int \frac {e^x (e+x)}{\log (e+x)} \, dx}{e^5}-\frac {\int \frac {e^x x^2 \log (x)}{\log (e+x)} \, dx}{e^5}-\frac {2 \int \frac {e^x x \log (x)}{\log (e+x)} \, dx}{e^5}+\frac {\int \frac {1}{x \log (e+x)} \, dx}{e^4}+\frac {\operatorname {Subst}\left (\int \frac {3 e^4-\log (-e+x)}{x \log ^2(x)} \, dx,x,e+x\right )}{e^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.72, size = 31, normalized size = 1.03 \begin {gather*} -\frac {3 e^5-e \log (x)+e^x x^2 \log (x)}{e^5 \log (e+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 29, normalized size = 0.97 \begin {gather*} -\frac {{\left ({\left (x^{2} e^{\left (x - 1\right )} - 1\right )} \log \relax (x) + 3 \, e^{4}\right )} e^{\left (-4\right )}}{\log \left (x + e\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 30, normalized size = 1.00 \begin {gather*} -\frac {{\left (x^{2} e^{x} \log \relax (x) - e \log \relax (x) + 3 \, e^{5}\right )} e^{\left (-5\right )}}{\log \left (x + e\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.30, size = 41, normalized size = 1.37
method | result | size |
risch | \(-\frac {\left ({\mathrm e}^{-4} x^{2} \ln \relax (x )-\ln \relax (x ) {\mathrm e}^{-3-x}+3 \,{\mathrm e}^{1-x}\right ) {\mathrm e}^{x -1}}{\ln \left (x +{\mathrm e}\right )}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 36, normalized size = 1.20 \begin {gather*} -\frac {{\left (x^{2} e^{x} \log \relax (x) - e \log \relax (x)\right )} e^{\left (-5\right )}}{\log \left (x + e\right )} - \frac {3}{\log \left (x + e\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {\ln \left (x+\mathrm {e}\right )\,\left ({\mathrm {e}}^{x-5}\,\left (x^2\,\mathrm {e}-{\mathrm {e}}^{1-x}\,\left (x+\mathrm {e}\right )+x^3\right )+{\mathrm {e}}^{x-5}\,\ln \relax (x)\,\left (\mathrm {e}\,\left (x^3+2\,x^2\right )+2\,x^3+x^4\right )\right )-3\,x+{\mathrm {e}}^{x-5}\,\ln \relax (x)\,\left (x\,{\mathrm {e}}^{1-x}-x^3\right )}{{\ln \left (x+\mathrm {e}\right )}^2\,\left (x^2+\mathrm {e}\,x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.53, size = 39, normalized size = 1.30 \begin {gather*} - \frac {x^{2} e^{x - 1} \log {\relax (x )}}{e^{4} \log {\left (x + e \right )}} + \frac {\log {\relax (x )} - 3 e^{4}}{e^{4} \log {\left (x + e \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________