Optimal. Leaf size=26 \[ 25 \left (-\frac {1}{2}-\frac {e^{x/5}}{x}-2 x+x^2\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.16, antiderivative size = 62, normalized size of antiderivative = 2.38, number of steps used = 12, number of rules used = 7, integrand size = 65, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {14, 2197, 2199, 2194, 2177, 2178, 2176} \begin {gather*} 25 x^4-100 x^3+75 x^2+\frac {25 e^{2 x/5}}{x^2}-50 e^{x/5} x+50 x+100 e^{x/5}+\frac {25 e^{x/5}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2197
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {10 e^{2 x/5} (-5+x)}{x^3}+50 \left (1+3 x-6 x^2+2 x^3\right )-\frac {5 e^{x/5} \left (5-x+6 x^2+2 x^3\right )}{x^2}\right ) \, dx\\ &=-\left (5 \int \frac {e^{x/5} \left (5-x+6 x^2+2 x^3\right )}{x^2} \, dx\right )+10 \int \frac {e^{2 x/5} (-5+x)}{x^3} \, dx+50 \int \left (1+3 x-6 x^2+2 x^3\right ) \, dx\\ &=\frac {25 e^{2 x/5}}{x^2}+50 x+75 x^2-100 x^3+25 x^4-5 \int \left (6 e^{x/5}+\frac {5 e^{x/5}}{x^2}-\frac {e^{x/5}}{x}+2 e^{x/5} x\right ) \, dx\\ &=\frac {25 e^{2 x/5}}{x^2}+50 x+75 x^2-100 x^3+25 x^4+5 \int \frac {e^{x/5}}{x} \, dx-10 \int e^{x/5} x \, dx-25 \int \frac {e^{x/5}}{x^2} \, dx-30 \int e^{x/5} \, dx\\ &=-150 e^{x/5}+\frac {25 e^{2 x/5}}{x^2}+\frac {25 e^{x/5}}{x}+50 x-50 e^{x/5} x+75 x^2-100 x^3+25 x^4+5 \text {Ei}\left (\frac {x}{5}\right )-5 \int \frac {e^{x/5}}{x} \, dx+50 \int e^{x/5} \, dx\\ &=100 e^{x/5}+\frac {25 e^{2 x/5}}{x^2}+\frac {25 e^{x/5}}{x}+50 x-50 e^{x/5} x+75 x^2-100 x^3+25 x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 50, normalized size = 1.92 \begin {gather*} \frac {25 e^{2 x/5}}{x^2}+50 x+75 x^2-100 x^3+25 x^4-5 e^{x/5} \left (-20-\frac {5}{x}+10 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.77, size = 48, normalized size = 1.85 \begin {gather*} \frac {25 \, {\left (x^{6} - 4 \, x^{5} + 3 \, x^{4} + 2 \, x^{3} - {\left (2 \, x^{3} - 4 \, x^{2} - x\right )} e^{\left (\frac {1}{5} \, x\right )} + e^{\left (\frac {2}{5} \, x\right )}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 52, normalized size = 2.00 \begin {gather*} \frac {25 \, {\left (x^{6} - 4 \, x^{5} + 3 \, x^{4} - 2 \, x^{3} e^{\left (\frac {1}{5} \, x\right )} + 2 \, x^{3} + 4 \, x^{2} e^{\left (\frac {1}{5} \, x\right )} + x e^{\left (\frac {1}{5} \, x\right )} + e^{\left (\frac {2}{5} \, x\right )}\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 48, normalized size = 1.85
method | result | size |
risch | \(25 x^{4}-100 x^{3}+75 x^{2}+50 x +\frac {25 \,{\mathrm e}^{\frac {2 x}{5}}}{x^{2}}-\frac {25 \left (2 x^{2}-4 x -1\right ) {\mathrm e}^{\frac {x}{5}}}{x}\) | \(48\) |
derivativedivides | \(25 x^{4}-100 x^{3}+75 x^{2}+50 x +\frac {25 \,{\mathrm e}^{\frac {2 x}{5}}}{x^{2}}+\frac {25 \,{\mathrm e}^{\frac {x}{5}}}{x}-50 x \,{\mathrm e}^{\frac {x}{5}}+100 \,{\mathrm e}^{\frac {x}{5}}\) | \(53\) |
default | \(25 x^{4}-100 x^{3}+75 x^{2}+50 x +\frac {25 \,{\mathrm e}^{\frac {2 x}{5}}}{x^{2}}+\frac {25 \,{\mathrm e}^{\frac {x}{5}}}{x}-50 x \,{\mathrm e}^{\frac {x}{5}}+100 \,{\mathrm e}^{\frac {x}{5}}\) | \(53\) |
norman | \(\frac {50 x^{3}+75 x^{4}-100 x^{5}+25 x^{6}+25 \,{\mathrm e}^{\frac {2 x}{5}}+25 x \,{\mathrm e}^{\frac {x}{5}}+100 \,{\mathrm e}^{\frac {x}{5}} x^{2}-50 \,{\mathrm e}^{\frac {x}{5}} x^{3}}{x^{2}}\) | \(59\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.50, size = 61, normalized size = 2.35 \begin {gather*} 25 \, x^{4} - 100 \, x^{3} + 75 \, x^{2} - 50 \, {\left (x - 5\right )} e^{\left (\frac {1}{5} \, x\right )} + 50 \, x + 5 \, {\rm Ei}\left (\frac {1}{5} \, x\right ) - 150 \, e^{\left (\frac {1}{5} \, x\right )} - 5 \, \Gamma \left (-1, -\frac {1}{5} \, x\right ) + 4 \, \Gamma \left (-1, -\frac {2}{5} \, x\right ) + 8 \, \Gamma \left (-2, -\frac {2}{5} \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.09, size = 51, normalized size = 1.96 \begin {gather*} 100\,{\mathrm {e}}^{x/5}+\frac {25\,{\mathrm {e}}^{\frac {2\,x}{5}}+25\,x\,{\mathrm {e}}^{x/5}}{x^2}-x\,\left (50\,{\mathrm {e}}^{x/5}-50\right )+75\,x^2-100\,x^3+25\,x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.15, size = 51, normalized size = 1.96 \begin {gather*} 25 x^{4} - 100 x^{3} + 75 x^{2} + 50 x + \frac {25 x e^{\frac {2 x}{5}} + \left (- 50 x^{4} + 100 x^{3} + 25 x^{2}\right ) e^{\frac {x}{5}}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________