Optimal. Leaf size=14 \[ 4+\log \left (-1-6 e^x \log (5) \log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.73, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {6 e^x \log (5)+6 e^x x \log (5) \log (x)}{x+6 e^x x \log (5) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6 e^x \log (5) (1+x \log (x))}{x+6 e^x x \log (5) \log (x)} \, dx\\ &=(6 \log (5)) \int \frac {e^x (1+x \log (x))}{x+6 e^x x \log (5) \log (x)} \, dx\\ &=(6 \log (5)) \int \left (\frac {e^x}{x \left (1+6 e^x \log (5) \log (x)\right )}+\frac {e^x \log (x)}{1+6 e^x \log (5) \log (x)}\right ) \, dx\\ &=(6 \log (5)) \int \frac {e^x}{x \left (1+6 e^x \log (5) \log (x)\right )} \, dx+(6 \log (5)) \int \frac {e^x \log (x)}{1+6 e^x \log (5) \log (x)} \, dx\\ &=(6 \log (5)) \int \frac {e^x}{x \left (1+6 e^x \log (5) \log (x)\right )} \, dx+(6 \log (5)) \int \left (\frac {1}{\log (15625)}-\frac {1}{6 \log (5) \left (1+6 e^x \log (5) \log (x)\right )}\right ) \, dx\\ &=\frac {6 x \log (5)}{\log (15625)}+(6 \log (5)) \int \frac {e^x}{x \left (1+6 e^x \log (5) \log (x)\right )} \, dx-\int \frac {1}{1+6 e^x \log (5) \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 12, normalized size = 0.86 \begin {gather*} \log \left (1+6 e^x \log (5) \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.81, size = 18, normalized size = 1.29 \begin {gather*} x + \log \left ({\left (6 \, e^{x} \log \relax (5) \log \relax (x) + 1\right )} e^{\left (-x\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.35, size = 11, normalized size = 0.79 \begin {gather*} \log \left (6 \, e^{x} \log \relax (5) \log \relax (x) + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 12, normalized size = 0.86
method | result | size |
norman | \(\ln \left (6 \ln \relax (5) {\mathrm e}^{x} \ln \relax (x )+1\right )\) | \(12\) |
risch | \(x +\ln \left (\ln \relax (x )+\frac {{\mathrm e}^{-x}}{6 \ln \relax (5)}\right )\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 25, normalized size = 1.79 \begin {gather*} \log \left (\frac {6 \, e^{x} \log \relax (5) \log \relax (x) + 1}{6 \, \log \relax (5) \log \relax (x)}\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.23, size = 11, normalized size = 0.79 \begin {gather*} \ln \left (6\,{\mathrm {e}}^x\,\ln \relax (5)\,\ln \relax (x)+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 19, normalized size = 1.36 \begin {gather*} \log {\left (e^{x} + \frac {1}{6 \log {\relax (5 )} \log {\relax (x )}} \right )} + \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________