Optimal. Leaf size=26 \[ \frac {x^2+4 \log \left (\frac {x^2}{\log ^2(5)}\right )}{e^5 x \log (x)} \]
________________________________________________________________________________________
Rubi [A] time = 1.03, antiderivative size = 31, normalized size of antiderivative = 1.19, number of steps used = 25, number of rules used = 11, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.234, Rules used = {12, 6742, 6688, 2297, 2298, 2353, 2309, 2178, 2306, 2366, 6482} \begin {gather*} \frac {4 \log \left (\frac {x^2}{\log ^2(5)}\right )}{e^5 x \log (x)}+\frac {x}{e^5 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2297
Rule 2298
Rule 2306
Rule 2309
Rule 2353
Rule 2366
Rule 6482
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-x^2+\log (x) \left (8+x^2-4 \log \left (\frac {x^2}{\log ^2(5)}\right )\right )-4 \log \left (\frac {x^2}{\log ^2(5)}\right )}{x^2 \log ^2(x)} \, dx}{e^5}\\ &=\frac {\int \left (\frac {-x^2+8 \log (x)+x^2 \log (x)}{x^2 \log ^2(x)}-\frac {4 (1+\log (x)) \log \left (\frac {x^2}{\log ^2(5)}\right )}{x^2 \log ^2(x)}\right ) \, dx}{e^5}\\ &=\frac {\int \frac {-x^2+8 \log (x)+x^2 \log (x)}{x^2 \log ^2(x)} \, dx}{e^5}-\frac {4 \int \frac {(1+\log (x)) \log \left (\frac {x^2}{\log ^2(5)}\right )}{x^2 \log ^2(x)} \, dx}{e^5}\\ &=\frac {\int \frac {-1+\log (x)+\frac {8 \log (x)}{x^2}}{\log ^2(x)} \, dx}{e^5}-\frac {4 \int \left (\frac {\log \left (\frac {x^2}{\log ^2(5)}\right )}{x^2 \log ^2(x)}+\frac {\log \left (\frac {x^2}{\log ^2(5)}\right )}{x^2 \log (x)}\right ) \, dx}{e^5}\\ &=\frac {\int \left (-\frac {1}{\log ^2(x)}+\frac {8+x^2}{x^2 \log (x)}\right ) \, dx}{e^5}-\frac {4 \int \frac {\log \left (\frac {x^2}{\log ^2(5)}\right )}{x^2 \log ^2(x)} \, dx}{e^5}-\frac {4 \int \frac {\log \left (\frac {x^2}{\log ^2(5)}\right )}{x^2 \log (x)} \, dx}{e^5}\\ &=\frac {4 \log \left (\frac {x^2}{\log ^2(5)}\right )}{e^5 x \log (x)}-\frac {\int \frac {1}{\log ^2(x)} \, dx}{e^5}+\frac {\int \frac {8+x^2}{x^2 \log (x)} \, dx}{e^5}+\frac {8 \int \frac {\text {Ei}(-\log (x))}{x} \, dx}{e^5}+\frac {8 \int \frac {-1-x \text {Ei}(-\log (x)) \log (x)}{x^2 \log (x)} \, dx}{e^5}\\ &=\frac {x}{e^5 \log (x)}+\frac {4 \log \left (\frac {x^2}{\log ^2(5)}\right )}{e^5 x \log (x)}+\frac {\int \left (\frac {1}{\log (x)}+\frac {8}{x^2 \log (x)}\right ) \, dx}{e^5}-\frac {\int \frac {1}{\log (x)} \, dx}{e^5}+\frac {8 \int \left (-\frac {\text {Ei}(-\log (x))}{x}-\frac {1}{x^2 \log (x)}\right ) \, dx}{e^5}+\frac {8 \operatorname {Subst}(\int \text {Ei}(-x) \, dx,x,\log (x))}{e^5}\\ &=\frac {8}{e^5 x}+\frac {x}{e^5 \log (x)}+\frac {8 \text {Ei}(-\log (x)) \log (x)}{e^5}+\frac {4 \log \left (\frac {x^2}{\log ^2(5)}\right )}{e^5 x \log (x)}-\frac {\text {li}(x)}{e^5}+\frac {\int \frac {1}{\log (x)} \, dx}{e^5}-\frac {8 \int \frac {\text {Ei}(-\log (x))}{x} \, dx}{e^5}\\ &=\frac {8}{e^5 x}+\frac {x}{e^5 \log (x)}+\frac {8 \text {Ei}(-\log (x)) \log (x)}{e^5}+\frac {4 \log \left (\frac {x^2}{\log ^2(5)}\right )}{e^5 x \log (x)}-\frac {8 \operatorname {Subst}(\int \text {Ei}(-x) \, dx,x,\log (x))}{e^5}\\ &=\frac {x}{e^5 \log (x)}+\frac {4 \log \left (\frac {x^2}{\log ^2(5)}\right )}{e^5 x \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 26, normalized size = 1.00 \begin {gather*} \frac {x^2+4 \log \left (x^2\right )-8 \log (\log (5))}{e^5 x \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 42, normalized size = 1.62 \begin {gather*} \frac {2 \, {\left (x^{2} + 4 \, \log \left (\frac {x^{2}}{\log \relax (5)^{2}}\right )\right )}}{x e^{5} \log \left (\log \relax (5)^{2}\right ) + x e^{5} \log \left (\frac {x^{2}}{\log \relax (5)^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 26, normalized size = 1.00 \begin {gather*} {\left (\frac {8}{x} + \frac {x^{2} - 8 \, \log \left (\log \relax (5)\right )}{x \log \relax (x)}\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.07, size = 80, normalized size = 3.08
method | result | size |
risch | \(\frac {8 \,{\mathrm e}^{-5}}{x}-\frac {{\mathrm e}^{-5} \left (2 i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}-4 i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )+2 i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-x^{2}+8 \ln \left (\ln \relax (5)\right )\right )}{x \ln \relax (x )}\) | \(80\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.49, size = 68, normalized size = 2.62 \begin {gather*} {\left (8 \, {\rm Ei}\left (-\log \relax (x)\right ) \log \relax (x) - 8 \, \Gamma \left (-1, \log \relax (x)\right ) \log \relax (x) - 4 \, {\rm Ei}\left (-\log \relax (x)\right ) \log \left (\frac {x^{2}}{\log \relax (5)^{2}}\right ) + 4 \, \Gamma \left (-1, \log \relax (x)\right ) \log \left (\frac {x^{2}}{\log \relax (5)^{2}}\right ) + \frac {8}{x} + {\rm Ei}\left (\log \relax (x)\right ) - \Gamma \left (-1, -\log \relax (x)\right )\right )} e^{\left (-5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.15, size = 25, normalized size = 0.96 \begin {gather*} \frac {{\mathrm {e}}^{-5}\,\left (4\,\ln \left (x^2\right )-8\,\ln \left (\ln \relax (5)\right )+x^2\right )}{x\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 24, normalized size = 0.92 \begin {gather*} \frac {x^{2} - 8 \log {\left (\log {\relax (5 )} \right )}}{x e^{5} \log {\relax (x )}} + \frac {8}{x e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________