Optimal. Leaf size=15 \[ \frac {20 e^{-2 x}}{x (5+x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.33, antiderivative size = 23, normalized size of antiderivative = 1.53, number of steps used = 10, number of rules used = 5, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.156, Rules used = {1594, 27, 6742, 2177, 2178} \begin {gather*} \frac {4 e^{-2 x}}{x}-\frac {4 e^{-2 x}}{x+5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1594
Rule 2177
Rule 2178
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-2 x} \left (-100-240 x-40 x^2\right )}{x^2 \left (25+10 x+x^2\right )} \, dx\\ &=\int \frac {e^{-2 x} \left (-100-240 x-40 x^2\right )}{x^2 (5+x)^2} \, dx\\ &=\int \left (-\frac {4 e^{-2 x}}{x^2}-\frac {8 e^{-2 x}}{x}+\frac {4 e^{-2 x}}{(5+x)^2}+\frac {8 e^{-2 x}}{5+x}\right ) \, dx\\ &=-\left (4 \int \frac {e^{-2 x}}{x^2} \, dx\right )+4 \int \frac {e^{-2 x}}{(5+x)^2} \, dx-8 \int \frac {e^{-2 x}}{x} \, dx+8 \int \frac {e^{-2 x}}{5+x} \, dx\\ &=\frac {4 e^{-2 x}}{x}-\frac {4 e^{-2 x}}{5+x}-8 \text {Ei}(-2 x)+8 e^{10} \text {Ei}(-2 (5+x))+8 \int \frac {e^{-2 x}}{x} \, dx-8 \int \frac {e^{-2 x}}{5+x} \, dx\\ &=\frac {4 e^{-2 x}}{x}-\frac {4 e^{-2 x}}{5+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 16, normalized size = 1.07 \begin {gather*} \frac {20 e^{-2 x}}{5 x+x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 15, normalized size = 1.00 \begin {gather*} \frac {20 \, e^{\left (-2 \, x\right )}}{x^{2} + 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.41, size = 15, normalized size = 1.00 \begin {gather*} \frac {20 \, e^{\left (-2 \, x\right )}}{x^{2} + 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 15, normalized size = 1.00
method | result | size |
norman | \(\frac {20 \,{\mathrm e}^{-2 x}}{x \left (5+x \right )}\) | \(15\) |
risch | \(\frac {20 \,{\mathrm e}^{-2 x}}{x \left (5+x \right )}\) | \(15\) |
gosper | \(\frac {20 \,{\mathrm e}^{x} {\mathrm e}^{-3 x}}{x \left (5+x \right )}\) | \(19\) |
default | \(\frac {4 \,{\mathrm e}^{-2 x} \left (5+2 x \right )}{\left (5+x \right ) x}-\frac {8 \,{\mathrm e}^{-2 x}}{5+x}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 15, normalized size = 1.00 \begin {gather*} \frac {20 \, e^{\left (-2 \, x\right )}}{x^{2} + 5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.33, size = 14, normalized size = 0.93 \begin {gather*} \frac {20\,{\mathrm {e}}^{-2\,x}}{x\,\left (x+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 12, normalized size = 0.80 \begin {gather*} \frac {20 e^{- 2 x}}{x^{2} + 5 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________