Optimal. Leaf size=24 \[ x-\frac {16 \log (5)}{9 (4-x)^2 x}+\log \left (5+x^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.15, antiderivative size = 43, normalized size of antiderivative = 1.79, number of steps used = 3, number of rules used = 2, integrand size = 83, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.024, Rules used = {2074, 260} \begin {gather*} \log \left (x^2+5\right )+x-\frac {\log (5)}{9 (4-x)}-\frac {4 \log (5)}{9 (4-x)^2}-\frac {\log (5)}{9 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 260
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {2 x}{5+x^2}+\frac {8 \log (5)}{9 (-4+x)^3}-\frac {\log (5)}{9 (-4+x)^2}+\frac {\log (5)}{9 x^2}\right ) \, dx\\ &=x-\frac {4 \log (5)}{9 (4-x)^2}-\frac {\log (5)}{9 (4-x)}-\frac {\log (5)}{9 x}+2 \int \frac {x}{5+x^2} \, dx\\ &=x-\frac {4 \log (5)}{9 (4-x)^2}-\frac {\log (5)}{9 (4-x)}-\frac {\log (5)}{9 x}+\log \left (5+x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 34, normalized size = 1.42 \begin {gather*} \frac {1}{9} \left (9 x+\frac {(-8+x) \log (5)}{(-4+x)^2}-\frac {\log (5)}{x}+9 \log \left (5+x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.64, size = 56, normalized size = 2.33 \begin {gather*} \frac {9 \, x^{4} - 72 \, x^{3} + 144 \, x^{2} + 9 \, {\left (x^{3} - 8 \, x^{2} + 16 \, x\right )} \log \left (x^{2} + 5\right ) - 16 \, \log \relax (5)}{9 \, {\left (x^{3} - 8 \, x^{2} + 16 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 31, normalized size = 1.29 \begin {gather*} x - \frac {\log \relax (5)}{9 \, x} + \frac {x \log \relax (5) - 8 \, \log \relax (5)}{9 \, {\left (x - 4\right )}^{2}} + \log \left (x^{2} + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 26, normalized size = 1.08
method | result | size |
risch | \(x -\frac {16 \ln \relax (5)}{9 x \left (x^{2}-8 x +16\right )}+\ln \left (x^{2}+5\right )\) | \(26\) |
norman | \(\frac {x^{4}-48 x^{2}+128 x -\frac {16 \ln \relax (5)}{9}}{x \left (x -4\right )^{2}}+\ln \left (x^{2}+5\right )\) | \(33\) |
default | \(x +\ln \left (x^{2}+5\right )-\frac {4 \ln \relax (5)}{9 \left (x -4\right )^{2}}+\frac {\ln \relax (5)}{9 x -36}-\frac {\ln \relax (5)}{9 x}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.69, size = 26, normalized size = 1.08 \begin {gather*} x - \frac {16 \, \log \relax (5)}{9 \, {\left (x^{3} - 8 \, x^{2} + 16 \, x\right )}} + \log \left (x^{2} + 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 28, normalized size = 1.17 \begin {gather*} x+\ln \left (x^2+5\right )-\frac {16\,\ln \relax (5)}{9\,x^3-72\,x^2+144\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.93, size = 26, normalized size = 1.08 \begin {gather*} x + \log {\left (x^{2} + 5 \right )} - \frac {16 \log {\relax (5 )}}{9 x^{3} - 72 x^{2} + 144 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________