Optimal. Leaf size=29 \[ -\log ^2(4)+\log \left (3 e^{-x} \left (\frac {1}{e^4}-\frac {-5+x}{2 x}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 24, normalized size of antiderivative = 0.83, number of steps used = 4, number of rules used = 3, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.075, Rules used = {1984, 1593, 893} \begin {gather*} -x-\log (x)+\log \left (\left (2-e^4\right ) x+5 e^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 893
Rule 1593
Rule 1984
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 e^4+5 e^4 x+\left (2-e^4\right ) x^2}{-5 e^4 x-\left (2-e^4\right ) x^2} \, dx\\ &=\int \frac {5 e^4+5 e^4 x+\left (2-e^4\right ) x^2}{x \left (-5 e^4+\left (-2+e^4\right ) x\right )} \, dx\\ &=\int \left (-1-\frac {1}{x}+\frac {2-e^4}{5 e^4+\left (2-e^4\right ) x}\right ) \, dx\\ &=-x-\log (x)+\log \left (5 e^4+\left (2-e^4\right ) x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 23, normalized size = 0.79 \begin {gather*} -x-\log (x)+\log \left (-5 e^4-2 x+e^4 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 19, normalized size = 0.66 \begin {gather*} -x + \log \left ({\left (x - 5\right )} e^{4} - 2 \, x\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 36, normalized size = 1.24 \begin {gather*} -\frac {x e^{4} - 2 \, x}{e^{4} - 2} + \log \left ({\left | x e^{4} - 2 \, x - 5 \, e^{4} \right |}\right ) - \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.35, size = 22, normalized size = 0.76
method | result | size |
default | \(-x +\ln \left (x \,{\mathrm e}^{4}-5 \,{\mathrm e}^{4}-2 x \right )-\ln \relax (x )\) | \(22\) |
norman | \(-x +\ln \left (x \,{\mathrm e}^{4}-5 \,{\mathrm e}^{4}-2 x \right )-\ln \relax (x )\) | \(22\) |
risch | \(-x -\ln \relax (x )+\ln \left (\left (2-{\mathrm e}^{4}\right ) x +5 \,{\mathrm e}^{4}\right )\) | \(23\) |
meijerg | \(\ln \left (1-\frac {x \left ({\mathrm e}^{4}-2\right ) {\mathrm e}^{-4}}{5}\right )-\ln \relax (x )+\ln \relax (5)-\ln \left ({\mathrm e}^{4}-2\right )+4-i \pi +\frac {25 \,{\mathrm e}^{4} \left (\frac {{\mathrm e}^{4}}{5}-\frac {2}{5}\right ) \left (-\frac {x \left ({\mathrm e}^{4}-2\right ) {\mathrm e}^{-4}}{5}-\ln \left (1-\frac {x \left ({\mathrm e}^{4}-2\right ) {\mathrm e}^{-4}}{5}\right )\right )}{\left ({\mathrm e}^{4}-2\right )^{2}}+\frac {5 \,{\mathrm e}^{4} \ln \left (1-\frac {x \left ({\mathrm e}^{4}-2\right ) {\mathrm e}^{-4}}{5}\right )}{{\mathrm e}^{4}-2}\) | \(94\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 20, normalized size = 0.69 \begin {gather*} -x + \log \left (x {\left (e^{4} - 2\right )} - 5 \, e^{4}\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.16, size = 20, normalized size = 0.69 \begin {gather*} -x-2\,\mathrm {atanh}\left (\frac {x\,{\mathrm {e}}^{-4}\,\left (2\,{\mathrm {e}}^4-4\right )}{5}-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 19, normalized size = 0.66 \begin {gather*} - x - \log {\relax (x )} + \log {\left (x - \frac {10 e^{4}}{-4 + 2 e^{4}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________