Optimal. Leaf size=20 \[ 9-\frac {-2-e^x}{x}+x+x (2+x) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 19, normalized size of antiderivative = 0.95, number of steps used = 5, number of rules used = 2, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {14, 2197} \begin {gather*} x^2+3 x+\frac {e^x}{x}+\frac {2}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^x (-1+x)}{x^2}+\frac {-2+3 x^2+2 x^3}{x^2}\right ) \, dx\\ &=\int \frac {e^x (-1+x)}{x^2} \, dx+\int \frac {-2+3 x^2+2 x^3}{x^2} \, dx\\ &=\frac {e^x}{x}+\int \left (3-\frac {2}{x^2}+2 x\right ) \, dx\\ &=\frac {2}{x}+\frac {e^x}{x}+3 x+x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 19, normalized size = 0.95 \begin {gather*} \frac {2}{x}+\frac {e^x}{x}+3 x+x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 16, normalized size = 0.80 \begin {gather*} \frac {x^{3} + 3 \, x^{2} + e^{x} + 2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 16, normalized size = 0.80 \begin {gather*} \frac {x^{3} + 3 \, x^{2} + e^{x} + 2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 17, normalized size = 0.85
method | result | size |
norman | \(\frac {2+x^{3}+3 x^{2}+{\mathrm e}^{x}}{x}\) | \(17\) |
default | \(3 x +x^{2}+\frac {2}{x}+\frac {{\mathrm e}^{x}}{x}\) | \(19\) |
risch | \(3 x +x^{2}+\frac {2}{x}+\frac {{\mathrm e}^{x}}{x}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.44, size = 21, normalized size = 1.05 \begin {gather*} x^{2} + 3 \, x + \frac {2}{x} + {\rm Ei}\relax (x) - \Gamma \left (-1, -x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 14, normalized size = 0.70 \begin {gather*} \frac {{\mathrm {e}}^x+2}{x}+x\,\left (x+3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 14, normalized size = 0.70 \begin {gather*} x^{2} + 3 x + \frac {e^{x}}{x} + \frac {2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________