Optimal. Leaf size=25 \[ \frac {\left (3+e^{e^x-x}+x-\log (4)\right ) \log (25)}{5 x} \]
________________________________________________________________________________________
Rubi [F] time = 0.28, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {(-3+\log (4)) \log (25)+e^{e^x-x} \left ((-1-x) \log (25)+e^x x \log (25)\right )}{5 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {(-3+\log (4)) \log (25)+e^{e^x-x} \left ((-1-x) \log (25)+e^x x \log (25)\right )}{x^2} \, dx\\ &=\frac {1}{5} \int \left (-\frac {e^{e^x-x} (1+x) \log (25)}{x^2}+\frac {\left (e^{e^x} x-3 \left (1-\frac {2 \log (2)}{3}\right )\right ) \log (25)}{x^2}\right ) \, dx\\ &=-\left (\frac {1}{5} \log (25) \int \frac {e^{e^x-x} (1+x)}{x^2} \, dx\right )+\frac {1}{5} \log (25) \int \frac {e^{e^x} x-3 \left (1-\frac {2 \log (2)}{3}\right )}{x^2} \, dx\\ &=-\left (\frac {1}{5} \log (25) \int \left (\frac {e^{e^x-x}}{x^2}+\frac {e^{e^x-x}}{x}\right ) \, dx\right )+\frac {1}{5} \log (25) \int \left (\frac {e^{e^x}}{x}+\frac {-3+\log (4)}{x^2}\right ) \, dx\\ &=\frac {(3-\log (4)) \log (25)}{5 x}-\frac {1}{5} \log (25) \int \frac {e^{e^x-x}}{x^2} \, dx+\frac {1}{5} \log (25) \int \frac {e^{e^x}}{x} \, dx-\frac {1}{5} \log (25) \int \frac {e^{e^x-x}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 24, normalized size = 0.96 \begin {gather*} \frac {\left (3+e^{e^x-x}-\log (4)\right ) \log (25)}{5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.04, size = 26, normalized size = 1.04 \begin {gather*} -\frac {2 \, {\left ({\left (2 \, \log \relax (2) - 3\right )} \log \relax (5) - e^{\left (-x + e^{x}\right )} \log \relax (5)\right )}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 26, normalized size = 1.04 \begin {gather*} \frac {2 \, {\left (e^{\left (-x + e^{x}\right )} \log \relax (5) - 2 \, \log \relax (5) \log \relax (2) + 3 \, \log \relax (5)\right )}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 27, normalized size = 1.08
method | result | size |
norman | \(\frac {\frac {2 \ln \relax (5) {\mathrm e}^{{\mathrm e}^{x}-x}}{5}-\frac {4 \ln \relax (2) \ln \relax (5)}{5}+\frac {6 \ln \relax (5)}{5}}{x}\) | \(27\) |
risch | \(-\frac {4 \ln \relax (2) \ln \relax (5)}{5 x}+\frac {6 \ln \relax (5)}{5 x}+\frac {2 \ln \relax (5) {\mathrm e}^{{\mathrm e}^{x}-x}}{5 x}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.82, size = 31, normalized size = 1.24 \begin {gather*} \frac {2 \, e^{\left (-x + e^{x}\right )} \log \relax (5)}{5 \, x} - \frac {4 \, \log \relax (5) \log \relax (2)}{5 \, x} + \frac {6 \, \log \relax (5)}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.22, size = 26, normalized size = 1.04 \begin {gather*} \frac {{\mathrm {e}}^{{\mathrm {e}}^x-x}\,\ln \left (25\right )-2\,\ln \relax (5)\,\left (2\,\ln \relax (2)-3\right )}{5\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 32, normalized size = 1.28 \begin {gather*} \frac {2 e^{- x + e^{x}} \log {\relax (5 )}}{5 x} - \frac {- \frac {6 \log {\relax (5 )}}{5} + \frac {4 \log {\relax (2 )} \log {\relax (5 )}}{5}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________