Optimal. Leaf size=26 \[ 6-\log \left (x \left (-2+\frac {(5+x)^2}{-e^{e^x}+x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 9.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 e^{2 e^x}+8 x^2+2 x^3+e^{e^x} \left (-25-16 x-3 x^2+e^x \left (25 x+10 x^2+x^3\right )\right )}{2 e^{2 e^x} x-25 x^2-8 x^3-x^4+e^{e^x} \left (25 x+6 x^2+x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {16 e^{e^x}}{\left (e^{e^x}-x\right ) \left (25+2 e^{e^x}+8 x+x^2\right )}-\frac {25 e^{e^x}}{\left (e^{e^x}-x\right ) x \left (25+2 e^{e^x}+8 x+x^2\right )}-\frac {2 e^{2 e^x}}{\left (e^{e^x}-x\right ) x \left (25+2 e^{e^x}+8 x+x^2\right )}+\frac {8 x}{\left (e^{e^x}-x\right ) \left (25+2 e^{e^x}+8 x+x^2\right )}-\frac {3 e^{e^x} x}{\left (e^{e^x}-x\right ) \left (25+2 e^{e^x}+8 x+x^2\right )}+\frac {2 x^2}{\left (e^{e^x}-x\right ) \left (25+2 e^{e^x}+8 x+x^2\right )}+\frac {e^{e^x+x} (5+x)^2}{\left (e^{e^x}-x\right ) \left (25+2 e^{e^x}+8 x+x^2\right )}\right ) \, dx\\ &=-\left (2 \int \frac {e^{2 e^x}}{\left (e^{e^x}-x\right ) x \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx\right )+2 \int \frac {x^2}{\left (e^{e^x}-x\right ) \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx-3 \int \frac {e^{e^x} x}{\left (e^{e^x}-x\right ) \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx+8 \int \frac {x}{\left (e^{e^x}-x\right ) \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx-16 \int \frac {e^{e^x}}{\left (e^{e^x}-x\right ) \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx-25 \int \frac {e^{e^x}}{\left (e^{e^x}-x\right ) x \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx+\int \frac {e^{e^x+x} (5+x)^2}{\left (e^{e^x}-x\right ) \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx\\ &=-\left (2 \int \left (\frac {e^{2 e^x}}{\left (e^{e^x}-x\right ) x (5+x)^2}-\frac {2 e^{2 e^x}}{x (5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )}\right ) \, dx\right )+2 \int \left (\frac {x^2}{\left (e^{e^x}-x\right ) (5+x)^2}-\frac {2 x^2}{(5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )}\right ) \, dx-3 \int \left (\frac {e^{e^x} x}{\left (e^{e^x}-x\right ) (5+x)^2}-\frac {2 e^{e^x} x}{(5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )}\right ) \, dx+8 \int \left (\frac {x}{\left (e^{e^x}-x\right ) (5+x)^2}-\frac {2 x}{(5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )}\right ) \, dx-16 \int \left (\frac {e^{e^x}}{\left (e^{e^x}-x\right ) (5+x)^2}-\frac {2 e^{e^x}}{(5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )}\right ) \, dx-25 \int \left (\frac {e^{e^x}}{\left (e^{e^x}-x\right ) x (5+x)^2}-\frac {2 e^{e^x}}{x (5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )}\right ) \, dx+\int \left (\frac {e^{e^x+x}}{e^{e^x}-x}-\frac {2 e^{e^x+x}}{25+2 e^{e^x}+8 x+x^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{2 e^x}}{\left (e^{e^x}-x\right ) x (5+x)^2} \, dx\right )+2 \int \frac {x^2}{\left (e^{e^x}-x\right ) (5+x)^2} \, dx-2 \int \frac {e^{e^x+x}}{25+2 e^{e^x}+8 x+x^2} \, dx-3 \int \frac {e^{e^x} x}{\left (e^{e^x}-x\right ) (5+x)^2} \, dx+4 \int \frac {e^{2 e^x}}{x (5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx-4 \int \frac {x^2}{(5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx+6 \int \frac {e^{e^x} x}{(5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx+8 \int \frac {x}{\left (e^{e^x}-x\right ) (5+x)^2} \, dx-16 \int \frac {e^{e^x}}{\left (e^{e^x}-x\right ) (5+x)^2} \, dx-16 \int \frac {x}{(5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx-25 \int \frac {e^{e^x}}{\left (e^{e^x}-x\right ) x (5+x)^2} \, dx+32 \int \frac {e^{e^x}}{(5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx+50 \int \frac {e^{e^x}}{x (5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx+\int \frac {e^{e^x+x}}{e^{e^x}-x} \, dx\\ &=-\left (2 \int \frac {e^{e^x+x}}{25+2 e^{e^x}+8 x+x^2} \, dx\right )+2 \int \left (\frac {1}{e^{e^x}-x}+\frac {25}{\left (e^{e^x}-x\right ) (5+x)^2}-\frac {10}{\left (e^{e^x}-x\right ) (5+x)}\right ) \, dx-2 \int \left (\frac {e^{2 e^x}}{25 \left (e^{e^x}-x\right ) x}-\frac {e^{2 e^x}}{5 \left (e^{e^x}-x\right ) (5+x)^2}-\frac {e^{2 e^x}}{25 \left (e^{e^x}-x\right ) (5+x)}\right ) \, dx-3 \int \left (-\frac {5 e^{e^x}}{\left (e^{e^x}-x\right ) (5+x)^2}+\frac {e^{e^x}}{\left (e^{e^x}-x\right ) (5+x)}\right ) \, dx-4 \int \left (\frac {1}{25+2 e^{e^x}+8 x+x^2}+\frac {25}{(5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )}-\frac {10}{(5+x) \left (25+2 e^{e^x}+8 x+x^2\right )}\right ) \, dx+4 \int \left (\frac {e^{2 e^x}}{25 x \left (25+2 e^{e^x}+8 x+x^2\right )}-\frac {e^{2 e^x}}{5 (5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )}-\frac {e^{2 e^x}}{25 (5+x) \left (25+2 e^{e^x}+8 x+x^2\right )}\right ) \, dx+6 \int \left (-\frac {5 e^{e^x}}{(5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )}+\frac {e^{e^x}}{(5+x) \left (25+2 e^{e^x}+8 x+x^2\right )}\right ) \, dx+8 \int \left (-\frac {5}{\left (e^{e^x}-x\right ) (5+x)^2}+\frac {1}{\left (e^{e^x}-x\right ) (5+x)}\right ) \, dx-16 \int \frac {e^{e^x}}{\left (e^{e^x}-x\right ) (5+x)^2} \, dx-16 \int \left (-\frac {5}{(5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )}+\frac {1}{(5+x) \left (25+2 e^{e^x}+8 x+x^2\right )}\right ) \, dx-25 \int \left (\frac {e^{e^x}}{25 \left (e^{e^x}-x\right ) x}-\frac {e^{e^x}}{5 \left (e^{e^x}-x\right ) (5+x)^2}-\frac {e^{e^x}}{25 \left (e^{e^x}-x\right ) (5+x)}\right ) \, dx+32 \int \frac {e^{e^x}}{(5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx+50 \int \left (\frac {e^{e^x}}{25 x \left (25+2 e^{e^x}+8 x+x^2\right )}-\frac {e^{e^x}}{5 (5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )}-\frac {e^{e^x}}{25 (5+x) \left (25+2 e^{e^x}+8 x+x^2\right )}\right ) \, dx+\int \frac {e^{e^x+x}}{e^{e^x}-x} \, dx\\ &=-\left (\frac {2}{25} \int \frac {e^{2 e^x}}{\left (e^{e^x}-x\right ) x} \, dx\right )+\frac {2}{25} \int \frac {e^{2 e^x}}{\left (e^{e^x}-x\right ) (5+x)} \, dx+\frac {4}{25} \int \frac {e^{2 e^x}}{x \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx-\frac {4}{25} \int \frac {e^{2 e^x}}{(5+x) \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx+\frac {2}{5} \int \frac {e^{2 e^x}}{\left (e^{e^x}-x\right ) (5+x)^2} \, dx-\frac {4}{5} \int \frac {e^{2 e^x}}{(5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx+2 \int \frac {1}{e^{e^x}-x} \, dx-2 \int \frac {e^{e^x+x}}{25+2 e^{e^x}+8 x+x^2} \, dx+2 \int \frac {e^{e^x}}{x \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx-2 \int \frac {e^{e^x}}{(5+x) \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx-3 \int \frac {e^{e^x}}{\left (e^{e^x}-x\right ) (5+x)} \, dx-4 \int \frac {1}{25+2 e^{e^x}+8 x+x^2} \, dx+5 \int \frac {e^{e^x}}{\left (e^{e^x}-x\right ) (5+x)^2} \, dx+6 \int \frac {e^{e^x}}{(5+x) \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx+8 \int \frac {1}{\left (e^{e^x}-x\right ) (5+x)} \, dx-10 \int \frac {e^{e^x}}{(5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx+15 \int \frac {e^{e^x}}{\left (e^{e^x}-x\right ) (5+x)^2} \, dx-16 \int \frac {e^{e^x}}{\left (e^{e^x}-x\right ) (5+x)^2} \, dx-16 \int \frac {1}{(5+x) \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx-20 \int \frac {1}{\left (e^{e^x}-x\right ) (5+x)} \, dx-30 \int \frac {e^{e^x}}{(5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx+32 \int \frac {e^{e^x}}{(5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx-40 \int \frac {1}{\left (e^{e^x}-x\right ) (5+x)^2} \, dx+40 \int \frac {1}{(5+x) \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx+50 \int \frac {1}{\left (e^{e^x}-x\right ) (5+x)^2} \, dx+80 \int \frac {1}{(5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx-100 \int \frac {1}{(5+x)^2 \left (25+2 e^{e^x}+8 x+x^2\right )} \, dx+\int \frac {e^{e^x+x}}{e^{e^x}-x} \, dx-\int \frac {e^{e^x}}{\left (e^{e^x}-x\right ) x} \, dx+\int \frac {e^{e^x}}{\left (e^{e^x}-x\right ) (5+x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 33, normalized size = 1.27 \begin {gather*} \log \left (e^{e^x}-x\right )-\log (x)-\log \left (25+2 e^{e^x}+8 x+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.97, size = 29, normalized size = 1.12 \begin {gather*} -\log \left (x^{2} + 8 \, x + 2 \, e^{\left (e^{x}\right )} + 25\right ) - \log \relax (x) + \log \left (-x + e^{\left (e^{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.02, size = 29, normalized size = 1.12 \begin {gather*} -\log \left (x^{2} + 8 \, x + 2 \, e^{\left (e^{x}\right )} + 25\right ) + \log \left (x - e^{\left (e^{x}\right )}\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 30, normalized size = 1.15
method | result | size |
norman | \(-\ln \relax (x )-\ln \left (x^{2}+8 x +2 \,{\mathrm e}^{{\mathrm e}^{x}}+25\right )+\ln \left (x -{\mathrm e}^{{\mathrm e}^{x}}\right )\) | \(30\) |
risch | \(-\ln \relax (x )+\ln \left ({\mathrm e}^{{\mathrm e}^{x}}-x \right )-\ln \left (\frac {x^{2}}{2}+4 x +{\mathrm e}^{{\mathrm e}^{x}}+\frac {25}{2}\right )\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 29, normalized size = 1.12 \begin {gather*} -\log \left (\frac {1}{2} \, x^{2} + 4 \, x + e^{\left (e^{x}\right )} + \frac {25}{2}\right ) - \log \relax (x) + \log \left (-x + e^{\left (e^{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {2\,{\mathrm {e}}^{2\,{\mathrm {e}}^x}+{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (16\,x-{\mathrm {e}}^x\,\left (x^3+10\,x^2+25\,x\right )+3\,x^2+25\right )-8\,x^2-2\,x^3}{25\,x^2-2\,x\,{\mathrm {e}}^{2\,{\mathrm {e}}^x}+8\,x^3+x^4-{\mathrm {e}}^{{\mathrm {e}}^x}\,\left (x^3+6\,x^2+25\,x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 29, normalized size = 1.12 \begin {gather*} - \log {\relax (x )} + \log {\left (- x + e^{e^{x}} \right )} - \log {\left (\frac {x^{2}}{2} + 4 x + e^{e^{x}} + \frac {25}{2} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________