Optimal. Leaf size=20 \[ \frac {9 x}{-5+\frac {1}{16} \left (-5+e^{2 x/25}\right )} \]
________________________________________________________________________________________
Rubi [B] time = 0.43, antiderivative size = 98, normalized size of antiderivative = 4.90, number of steps used = 18, number of rules used = 13, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.342, Rules used = {6741, 12, 6742, 2185, 2184, 2190, 2279, 2391, 2191, 2282, 36, 31, 29} \begin {gather*} -\frac {144 x^2}{2125}+\frac {36 (25-2 x)^2}{2125}-\frac {144 x}{85-e^{2 x/25}}+\frac {144 x}{85}+\frac {72}{85} (25-2 x) \log \left (1-\frac {1}{85} e^{2 x/25}\right )-\frac {360}{17} \log \left (85-e^{2 x/25}\right )+\frac {144}{85} x \log \left (1-\frac {1}{85} e^{2 x/25}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 31
Rule 36
Rule 2184
Rule 2185
Rule 2190
Rule 2191
Rule 2279
Rule 2282
Rule 2391
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-306000+e^{2 x/25} (3600-288 x)}{25 \left (85-e^{2 x/25}\right )^2} \, dx\\ &=\frac {1}{25} \int \frac {-306000+e^{2 x/25} (3600-288 x)}{\left (85-e^{2 x/25}\right )^2} \, dx\\ &=\frac {1}{25} \int \left (-\frac {24480 x}{\left (-85+e^{2 x/25}\right )^2}-\frac {144 (-25+2 x)}{-85+e^{2 x/25}}\right ) \, dx\\ &=-\left (\frac {144}{25} \int \frac {-25+2 x}{-85+e^{2 x/25}} \, dx\right )-\frac {4896}{5} \int \frac {x}{\left (-85+e^{2 x/25}\right )^2} \, dx\\ &=\frac {36 (25-2 x)^2}{2125}-\frac {144 \int \frac {e^{2 x/25} (-25+2 x)}{-85+e^{2 x/25}} \, dx}{2125}-\frac {288}{25} \int \frac {e^{2 x/25} x}{\left (-85+e^{2 x/25}\right )^2} \, dx+\frac {288}{25} \int \frac {x}{-85+e^{2 x/25}} \, dx\\ &=\frac {36 (25-2 x)^2}{2125}-\frac {144 x}{85-e^{2 x/25}}-\frac {144 x^2}{2125}+\frac {72}{85} (25-2 x) \log \left (1-\frac {1}{85} e^{2 x/25}\right )+\frac {288 \int \frac {e^{2 x/25} x}{-85+e^{2 x/25}} \, dx}{2125}+\frac {144}{85} \int \log \left (1-\frac {1}{85} e^{2 x/25}\right ) \, dx-144 \int \frac {1}{-85+e^{2 x/25}} \, dx\\ &=\frac {36 (25-2 x)^2}{2125}-\frac {144 x}{85-e^{2 x/25}}-\frac {144 x^2}{2125}+\frac {72}{85} (25-2 x) \log \left (1-\frac {1}{85} e^{2 x/25}\right )+\frac {144}{85} x \log \left (1-\frac {1}{85} e^{2 x/25}\right )-\frac {144}{85} \int \log \left (1-\frac {1}{85} e^{2 x/25}\right ) \, dx+\frac {360}{17} \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {x}{85}\right )}{x} \, dx,x,e^{2 x/25}\right )-1800 \operatorname {Subst}\left (\int \frac {1}{(-85+x) x} \, dx,x,e^{2 x/25}\right )\\ &=\frac {36 (25-2 x)^2}{2125}-\frac {144 x}{85-e^{2 x/25}}-\frac {144 x^2}{2125}+\frac {72}{85} (25-2 x) \log \left (1-\frac {1}{85} e^{2 x/25}\right )+\frac {144}{85} x \log \left (1-\frac {1}{85} e^{2 x/25}\right )-\frac {360}{17} \text {Li}_2\left (\frac {1}{85} e^{2 x/25}\right )-\frac {360}{17} \operatorname {Subst}\left (\int \frac {1}{-85+x} \, dx,x,e^{2 x/25}\right )+\frac {360}{17} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^{2 x/25}\right )-\frac {360}{17} \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {x}{85}\right )}{x} \, dx,x,e^{2 x/25}\right )\\ &=\frac {36 (25-2 x)^2}{2125}+\frac {144 x}{85}-\frac {144 x}{85-e^{2 x/25}}-\frac {144 x^2}{2125}-\frac {360}{17} \log \left (85-e^{2 x/25}\right )+\frac {72}{85} (25-2 x) \log \left (1-\frac {1}{85} e^{2 x/25}\right )+\frac {144}{85} x \log \left (1-\frac {1}{85} e^{2 x/25}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 14, normalized size = 0.70 \begin {gather*} \frac {144 x}{-85+e^{2 x/25}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 11, normalized size = 0.55 \begin {gather*} \frac {144 \, x}{e^{\left (\frac {2}{25} \, x\right )} - 85} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.51, size = 11, normalized size = 0.55 \begin {gather*} \frac {144 \, x}{e^{\left (\frac {2}{25} \, x\right )} - 85} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 12, normalized size = 0.60
method | result | size |
risch | \(\frac {144 x}{{\mathrm e}^{\frac {2 x}{25}}-85}\) | \(12\) |
norman | \(\frac {144 x}{{\mathrm e}^{\frac {2 x}{25}}-85}\) | \(14\) |
derivativedivides | \(-\frac {720 \ln \left ({\mathrm e}^{\frac {x}{25}}\right )}{17}+\frac {144 x \,{\mathrm e}^{\frac {2 x}{25}}}{85 \left ({\mathrm e}^{\frac {2 x}{25}}-85\right )}\) | \(28\) |
default | \(-\frac {720 \ln \left ({\mathrm e}^{\frac {x}{25}}\right )}{17}+\frac {144 x \,{\mathrm e}^{\frac {2 x}{25}}}{85 \left ({\mathrm e}^{\frac {2 x}{25}}-85\right )}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 19, normalized size = 0.95 \begin {gather*} -\frac {144}{85} \, x + \frac {144 \, x e^{\left (\frac {2}{25} \, x\right )}}{85 \, {\left (e^{\left (\frac {2}{25} \, x\right )} - 85\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.16, size = 11, normalized size = 0.55 \begin {gather*} \frac {144\,x}{{\mathrm {e}}^{\frac {2\,x}{25}}-85} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 10, normalized size = 0.50 \begin {gather*} \frac {144 x}{e^{\frac {2 x}{25}} - 85} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________