Optimal. Leaf size=32 \[ -2-e^x+x+4 \left (-\frac {1}{5} (4-x) x^2+\frac {3}{3+x}\right )+\log (6) \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 28, normalized size of antiderivative = 0.88, number of steps used = 13, number of rules used = 5, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.106, Rules used = {27, 12, 6742, 2194, 43} \begin {gather*} \frac {4 x^3}{5}-\frac {16 x^2}{5}+x-e^x+\frac {12}{x+3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 43
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-15-258 x-79 x^2+40 x^3+12 x^4+e^x \left (-45-30 x-5 x^2\right )}{5 (3+x)^2} \, dx\\ &=\frac {1}{5} \int \frac {-15-258 x-79 x^2+40 x^3+12 x^4+e^x \left (-45-30 x-5 x^2\right )}{(3+x)^2} \, dx\\ &=\frac {1}{5} \int \left (-5 e^x-\frac {15}{(3+x)^2}-\frac {258 x}{(3+x)^2}-\frac {79 x^2}{(3+x)^2}+\frac {40 x^3}{(3+x)^2}+\frac {12 x^4}{(3+x)^2}\right ) \, dx\\ &=\frac {3}{3+x}+\frac {12}{5} \int \frac {x^4}{(3+x)^2} \, dx+8 \int \frac {x^3}{(3+x)^2} \, dx-\frac {79}{5} \int \frac {x^2}{(3+x)^2} \, dx-\frac {258}{5} \int \frac {x}{(3+x)^2} \, dx-\int e^x \, dx\\ &=-e^x+\frac {3}{3+x}+\frac {12}{5} \int \left (27-6 x+x^2+\frac {81}{(3+x)^2}-\frac {108}{3+x}\right ) \, dx+8 \int \left (-6+x-\frac {27}{(3+x)^2}+\frac {27}{3+x}\right ) \, dx-\frac {79}{5} \int \left (1+\frac {9}{(3+x)^2}-\frac {6}{3+x}\right ) \, dx-\frac {258}{5} \int \left (-\frac {3}{(3+x)^2}+\frac {1}{3+x}\right ) \, dx\\ &=-e^x+x-\frac {16 x^2}{5}+\frac {4 x^3}{5}+\frac {12}{3+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 30, normalized size = 0.94 \begin {gather*} \frac {1}{5} \left (-5 e^x+5 x-16 x^2+4 x^3+\frac {60}{3+x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 34, normalized size = 1.06 \begin {gather*} \frac {4 \, x^{4} - 4 \, x^{3} - 43 \, x^{2} - 5 \, {\left (x + 3\right )} e^{x} + 15 \, x + 60}{5 \, {\left (x + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 36, normalized size = 1.12 \begin {gather*} \frac {4 \, x^{4} - 4 \, x^{3} - 43 \, x^{2} - 5 \, x e^{x} + 15 \, x - 15 \, e^{x} + 60}{5 \, {\left (x + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 24, normalized size = 0.75
method | result | size |
default | \(\frac {12}{3+x}+x -\frac {16 x^{2}}{5}+\frac {4 x^{3}}{5}-{\mathrm e}^{x}\) | \(24\) |
risch | \(\frac {12}{3+x}+x -\frac {16 x^{2}}{5}+\frac {4 x^{3}}{5}-{\mathrm e}^{x}\) | \(24\) |
norman | \(\frac {-\frac {43 x^{2}}{5}-\frac {4 x^{3}}{5}+\frac {4 x^{4}}{5}-{\mathrm e}^{x} x -3 \,{\mathrm e}^{x}+3}{3+x}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {4}{5} \, x^{3} - \frac {16}{5} \, x^{2} + x - \frac {{\left (x^{2} + 6 \, x\right )} e^{x}}{x^{2} + 6 \, x + 9} + \frac {9 \, e^{\left (-3\right )} E_{2}\left (-x - 3\right )}{x + 3} + \frac {12}{x + 3} + 18 \, \int \frac {e^{x}}{x^{3} + 9 \, x^{2} + 27 \, x + 27}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 23, normalized size = 0.72 \begin {gather*} x-{\mathrm {e}}^x+\frac {12}{x+3}-\frac {16\,x^2}{5}+\frac {4\,x^3}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 22, normalized size = 0.69 \begin {gather*} \frac {4 x^{3}}{5} - \frac {16 x^{2}}{5} + x - e^{x} + \frac {12}{x + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________