Optimal. Leaf size=25 \[ \left (e+x^{\frac {1}{3} \left (2 x-2 e^{-x} x\right )}\right ) (3+\log (x)) \]
________________________________________________________________________________________
Rubi [F] time = 18.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x} \left (3 e^{1+x}+x^{\frac {1}{3} e^{-x} \left (-2 x+2 e^x x\right )} \left (-6 x+e^x (3+6 x)+\left (-8 x+8 e^x x+6 x^2\right ) \log (x)+\left (-2 x+2 e^x x+2 x^2\right ) \log ^2(x)\right )\right )}{3 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {e^{-x} \left (3 e^{1+x}+x^{\frac {1}{3} e^{-x} \left (-2 x+2 e^x x\right )} \left (-6 x+e^x (3+6 x)+\left (-8 x+8 e^x x+6 x^2\right ) \log (x)+\left (-2 x+2 e^x x+2 x^2\right ) \log ^2(x)\right )\right )}{x} \, dx\\ &=\frac {1}{3} \int \left (\frac {3 e}{x}+e^{-x} x^{-1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \left (3 e^x-6 x+6 e^x x-8 x \log (x)+8 e^x x \log (x)+6 x^2 \log (x)-2 x \log ^2(x)+2 e^x x \log ^2(x)+2 x^2 \log ^2(x)\right )\right ) \, dx\\ &=e \log (x)+\frac {1}{3} \int e^{-x} x^{-1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \left (3 e^x-6 x+6 e^x x-8 x \log (x)+8 e^x x \log (x)+6 x^2 \log (x)-2 x \log ^2(x)+2 e^x x \log ^2(x)+2 x^2 \log ^2(x)\right ) \, dx\\ &=e \log (x)+\frac {1}{3} \int e^{-x} x^{-1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \left (-6 x+e^x (3+6 x)+2 x \left (-4+4 e^x+3 x\right ) \log (x)+2 x \left (-1+e^x+x\right ) \log ^2(x)\right ) \, dx\\ &=e \log (x)+\frac {1}{3} \int \left (-6 e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x}+3 x^{-1-\frac {2}{3} \left (-1+e^{-x}\right ) x} (1+2 x)+2 e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \left (-4+4 e^x+3 x\right ) \log (x)+2 e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \left (-1+e^x+x\right ) \log ^2(x)\right ) \, dx\\ &=e \log (x)+\frac {2}{3} \int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \left (-4+4 e^x+3 x\right ) \log (x) \, dx+\frac {2}{3} \int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \left (-1+e^x+x\right ) \log ^2(x) \, dx-2 \int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx+\int x^{-1-\frac {2}{3} \left (-1+e^{-x}\right ) x} (1+2 x) \, dx\\ &=\frac {3 x^{\frac {2}{3} \left (1-e^{-x}\right ) x} (1+2 x)}{3+2 \left (1-e^{-x}\right ) x}+e \log (x)+\frac {2}{3} \int \left (x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \log ^2(x)+e^{-x} (-1+x) x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \log ^2(x)\right ) \, dx-\frac {2}{3} \int \frac {4 \int x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx-4 \int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx+3 \int e^{-x} x^{1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx}{x} \, dx-2 \int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx+\frac {\int x^{-1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx}{1-\frac {2}{3} \left (-1+e^{-x}\right ) x}+(2 \log (x)) \int e^{-x} x^{1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx+\frac {1}{3} (8 \log (x)) \int x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx-\frac {1}{3} (8 \log (x)) \int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx\\ &=\frac {3 x^{\frac {2}{3} \left (1-e^{-x}\right ) x} (1+2 x)}{3+2 \left (1-e^{-x}\right ) x}+e \log (x)+\frac {2}{3} \int x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \log ^2(x) \, dx+\frac {2}{3} \int e^{-x} (-1+x) x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \log ^2(x) \, dx-\frac {2}{3} \int \left (\frac {4 \left (\int x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx-\int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx\right )}{x}+\frac {3 \int e^{-x} x^{1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx}{x}\right ) \, dx-2 \int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx+\frac {\int x^{-1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx}{1-\frac {2}{3} \left (-1+e^{-x}\right ) x}+(2 \log (x)) \int e^{-x} x^{1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx+\frac {1}{3} (8 \log (x)) \int x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx-\frac {1}{3} (8 \log (x)) \int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx\\ &=\frac {3 x^{\frac {2}{3} \left (1-e^{-x}\right ) x} (1+2 x)}{3+2 \left (1-e^{-x}\right ) x}+e \log (x)+\frac {2}{3} \int x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \log ^2(x) \, dx+\frac {2}{3} \int \left (-e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \log ^2(x)+e^{-x} x^{1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \log ^2(x)\right ) \, dx-2 \int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx-2 \int \frac {\int e^{-x} x^{1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx}{x} \, dx-\frac {8}{3} \int \frac {\int x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx-\int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx}{x} \, dx+\frac {\int x^{-1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx}{1-\frac {2}{3} \left (-1+e^{-x}\right ) x}+(2 \log (x)) \int e^{-x} x^{1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx+\frac {1}{3} (8 \log (x)) \int x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx-\frac {1}{3} (8 \log (x)) \int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx\\ &=\frac {3 x^{\frac {2}{3} \left (1-e^{-x}\right ) x} (1+2 x)}{3+2 \left (1-e^{-x}\right ) x}+e \log (x)+\frac {2}{3} \int x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \log ^2(x) \, dx-\frac {2}{3} \int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \log ^2(x) \, dx+\frac {2}{3} \int e^{-x} x^{1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \log ^2(x) \, dx-2 \int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx-2 \int \frac {\int e^{-x} x^{1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx}{x} \, dx-\frac {8}{3} \int \left (\frac {\int x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx}{x}-\frac {\int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx}{x}\right ) \, dx+\frac {\int x^{-1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx}{1-\frac {2}{3} \left (-1+e^{-x}\right ) x}+(2 \log (x)) \int e^{-x} x^{1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx+\frac {1}{3} (8 \log (x)) \int x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx-\frac {1}{3} (8 \log (x)) \int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx\\ &=\frac {3 x^{\frac {2}{3} \left (1-e^{-x}\right ) x} (1+2 x)}{3+2 \left (1-e^{-x}\right ) x}+e \log (x)+\frac {2}{3} \int x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \log ^2(x) \, dx-\frac {2}{3} \int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \log ^2(x) \, dx+\frac {2}{3} \int e^{-x} x^{1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \log ^2(x) \, dx-2 \int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx-2 \int \frac {\int e^{-x} x^{1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx}{x} \, dx-\frac {8}{3} \int \frac {\int x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx}{x} \, dx+\frac {8}{3} \int \frac {\int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx}{x} \, dx+\frac {\int x^{-1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx}{1-\frac {2}{3} \left (-1+e^{-x}\right ) x}+(2 \log (x)) \int e^{-x} x^{1-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx+\frac {1}{3} (8 \log (x)) \int x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx-\frac {1}{3} (8 \log (x)) \int e^{-x} x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.21, size = 31, normalized size = 1.24 \begin {gather*} \frac {1}{3} \left (3 e \log (x)+x^{-\frac {2}{3} \left (-1+e^{-x}\right ) x} (9+3 \log (x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 35, normalized size = 1.40 \begin {gather*} e \log \relax (x) + \frac {\log \relax (x) + 3}{x^{\frac {2}{3} \, {\left (x e - x e^{\left (x + 1\right )}\right )} e^{\left (-x - 1\right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left (2 \, {\left (x^{2} + x e^{x} - x\right )} \log \relax (x)^{2} + 3 \, {\left (2 \, x + 1\right )} e^{x} + 2 \, {\left (3 \, x^{2} + 4 \, x e^{x} - 4 \, x\right )} \log \relax (x) - 6 \, x\right )} x^{\frac {2}{3} \, {\left (x e^{x} - x\right )} e^{\left (-x\right )}} + 3 \, e^{\left (x + 1\right )}\right )} e^{\left (-x\right )}}{3 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 26, normalized size = 1.04
method | result | size |
risch | \({\mathrm e} \ln \relax (x )+\frac {\left (3 \ln \relax (x )+9\right ) x^{-\frac {2 x \left (-1+{\mathrm e}^{-x}\right )}{3}}}{3}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 27, normalized size = 1.08 \begin {gather*} {\left (\log \relax (x) + 3\right )} e^{\left (-\frac {2}{3} \, x e^{\left (-x\right )} \log \relax (x) + \frac {2}{3} \, x \log \relax (x)\right )} + e \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.28, size = 27, normalized size = 1.08 \begin {gather*} {\mathrm {e}}^{\frac {2\,x\,\ln \relax (x)}{3}-\frac {2\,x\,{\mathrm {e}}^{-x}\,\ln \relax (x)}{3}}\,\left (\ln \relax (x)+3\right )+\mathrm {e}\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________