Optimal. Leaf size=25 \[ \frac {x \left (2-\frac {3}{x}-4 x^2+5 \left (e^2+\log (x)\right )\right )}{e} \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 35, normalized size of antiderivative = 1.40, number of steps used = 3, number of rules used = 2, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {12, 2295} \begin {gather*} -\frac {4 x^3}{e}+\frac {\left (7+5 e^2\right ) x}{e}-\frac {5 x}{e}+\frac {5 x \log (x)}{e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (7+5 e^2-12 x^2+5 \log (x)\right ) \, dx}{e}\\ &=\frac {\left (7+5 e^2\right ) x}{e}-\frac {4 x^3}{e}+\frac {5 \int \log (x) \, dx}{e}\\ &=-\frac {5 x}{e}+\frac {\left (7+5 e^2\right ) x}{e}-\frac {4 x^3}{e}+\frac {5 x \log (x)}{e}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 24, normalized size = 0.96 \begin {gather*} \frac {2 x+5 e^2 x-4 x^3+5 x \log (x)}{e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 23, normalized size = 0.92 \begin {gather*} -{\left (4 \, x^{3} - 5 \, x e^{2} - 5 \, x \log \relax (x) - 2 \, x\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 23, normalized size = 0.92 \begin {gather*} -{\left (4 \, x^{3} - 5 \, x e^{2} - 5 \, x \log \relax (x) - 2 \, x\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 25, normalized size = 1.00
method | result | size |
default | \({\mathrm e}^{-1} \left (-4 x^{3}+2 x +5 \,{\mathrm e}^{2} x +5 x \ln \relax (x )\right )\) | \(25\) |
risch | \(5 x \,{\mathrm e}-4 \,{\mathrm e}^{-1} x^{3}+5 x \,{\mathrm e}^{-1} \ln \relax (x )+2 \,{\mathrm e}^{-1} x\) | \(26\) |
norman | \(\left (2+5 \,{\mathrm e}^{2}\right ) {\mathrm e}^{-1} x -4 \,{\mathrm e}^{-1} x^{3}+5 x \,{\mathrm e}^{-1} \ln \relax (x )\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 23, normalized size = 0.92 \begin {gather*} -{\left (4 \, x^{3} - 5 \, x e^{2} - 5 \, x \log \relax (x) - 2 \, x\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.13, size = 19, normalized size = 0.76 \begin {gather*} x\,{\mathrm {e}}^{-1}\,\left (5\,{\mathrm {e}}^2+5\,\ln \relax (x)-4\,x^2+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 29, normalized size = 1.16 \begin {gather*} - \frac {4 x^{3}}{e} + \frac {5 x \log {\relax (x )}}{e} + \frac {x \left (2 + 5 e^{2}\right )}{e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________