Optimal. Leaf size=25 \[ x \log \left (-5-e^2-2 x-x^2 \left (4+x^2\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.13, antiderivative size = 28, normalized size of antiderivative = 1.12, number of steps used = 13, number of rules used = 4, integrand size = 91, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.044, Rules used = {6741, 6742, 2523, 12} \begin {gather*} x \log \left (-x^6-8 x^4-16 x^2-2 x-e^2-5\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2523
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x+32 x^2+32 x^4+6 x^6+\left (5+e^2+2 x+16 x^2+8 x^4+x^6\right ) \log \left (-5-e^2-2 x-16 x^2-8 x^4-x^6\right )}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6} \, dx\\ &=\int \left (\frac {2 x \left (1+16 x+16 x^3+3 x^5\right )}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6}+\log \left (-5 \left (1+\frac {e^2}{5}\right )-2 x-16 x^2-8 x^4-x^6\right )\right ) \, dx\\ &=2 \int \frac {x \left (1+16 x+16 x^3+3 x^5\right )}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6} \, dx+\int \log \left (-5 \left (1+\frac {e^2}{5}\right )-2 x-16 x^2-8 x^4-x^6\right ) \, dx\\ &=x \log \left (-5-e^2-2 x-16 x^2-8 x^4-x^6\right )+2 \int \left (3-\frac {3 \left (5+e^2\right )+5 x+32 x^2+8 x^4}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6}\right ) \, dx-\int \frac {2 x \left (1+16 x+16 x^3+3 x^5\right )}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6} \, dx\\ &=6 x+x \log \left (-5-e^2-2 x-16 x^2-8 x^4-x^6\right )-2 \int \frac {3 \left (5+e^2\right )+5 x+32 x^2+8 x^4}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6} \, dx-2 \int \frac {x \left (1+16 x+16 x^3+3 x^5\right )}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6} \, dx\\ &=6 x+x \log \left (-5-e^2-2 x-16 x^2-8 x^4-x^6\right )-2 \int \left (\frac {3 \left (5+e^2\right )}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6}+\frac {5 x}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6}+\frac {32 x^2}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6}+\frac {8 x^4}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6}\right ) \, dx-2 \int \left (3-\frac {3 \left (5+e^2\right )+5 x+32 x^2+8 x^4}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6}\right ) \, dx\\ &=x \log \left (-5-e^2-2 x-16 x^2-8 x^4-x^6\right )+2 \int \frac {3 \left (5+e^2\right )+5 x+32 x^2+8 x^4}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6} \, dx-10 \int \frac {x}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6} \, dx-16 \int \frac {x^4}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6} \, dx-64 \int \frac {x^2}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6} \, dx-\left (6 \left (5+e^2\right )\right ) \int \frac {1}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6} \, dx\\ &=x \log \left (-5-e^2-2 x-16 x^2-8 x^4-x^6\right )+2 \int \left (\frac {3 \left (5+e^2\right )}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6}+\frac {5 x}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6}+\frac {32 x^2}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6}+\frac {8 x^4}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6}\right ) \, dx-10 \int \frac {x}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6} \, dx-16 \int \frac {x^4}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6} \, dx-64 \int \frac {x^2}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6} \, dx-\left (6 \left (5+e^2\right )\right ) \int \frac {1}{5 \left (1+\frac {e^2}{5}\right )+2 x+16 x^2+8 x^4+x^6} \, dx\\ &=x \log \left (-5-e^2-2 x-16 x^2-8 x^4-x^6\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 28, normalized size = 1.12 \begin {gather*} x \log \left (-5-e^2-2 x-16 x^2-8 x^4-x^6\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 27, normalized size = 1.08 \begin {gather*} x \log \left (-x^{6} - 8 \, x^{4} - 16 \, x^{2} - 2 \, x - e^{2} - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.71, size = 27, normalized size = 1.08 \begin {gather*} x \log \left (-x^{6} - 8 \, x^{4} - 16 \, x^{2} - 2 \, x - e^{2} - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 28, normalized size = 1.12
method | result | size |
default | \(\ln \left (-{\mathrm e}^{2}-x^{6}-8 x^{4}-16 x^{2}-2 x -5\right ) x\) | \(28\) |
norman | \(\ln \left (-{\mathrm e}^{2}-x^{6}-8 x^{4}-16 x^{2}-2 x -5\right ) x\) | \(28\) |
risch | \(\ln \left (-{\mathrm e}^{2}-x^{6}-8 x^{4}-16 x^{2}-2 x -5\right ) x\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 27, normalized size = 1.08 \begin {gather*} x \log \left (-x^{6} - 8 \, x^{4} - 16 \, x^{2} - 2 \, x - e^{2} - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.64, size = 27, normalized size = 1.08 \begin {gather*} x\,\ln \left (-x^6-8\,x^4-16\,x^2-2\,x-{\mathrm {e}}^2-5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 26, normalized size = 1.04 \begin {gather*} x \log {\left (- x^{6} - 8 x^{4} - 16 x^{2} - 2 x - e^{2} - 5 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________