Optimal. Leaf size=22 \[ \frac {12}{5 \left (-x+\frac {\log \left (\frac {x}{5}\right )}{4+x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.01, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-48+180 x+96 x^2+12 x^3+12 x \log \left (\frac {x}{5}\right )}{80 x^3+40 x^4+5 x^5+\left (-40 x^2-10 x^3\right ) \log \left (\frac {x}{5}\right )+5 x \log ^2\left (\frac {x}{5}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {12 \left (-4+15 x+8 x^2+x^3+x \log \left (\frac {x}{5}\right )\right )}{5 x \left (4 x+x^2+\log (5)-\log (x)\right )^2} \, dx\\ &=\frac {12}{5} \int \frac {-4+15 x+8 x^2+x^3+x \log \left (\frac {x}{5}\right )}{x \left (4 x+x^2+\log (5)-\log (x)\right )^2} \, dx\\ &=\frac {12}{5} \int \left (\frac {15}{\left (4 x+x^2+\log (5)-\log (x)\right )^2}-\frac {4}{x \left (4 x+x^2+\log (5)-\log (x)\right )^2}+\frac {8 x}{\left (4 x+x^2+\log (5)-\log (x)\right )^2}+\frac {x^2}{\left (4 x+x^2+\log (5)-\log (x)\right )^2}+\frac {\log \left (\frac {x}{5}\right )}{\left (4 x+x^2+\log (5)-\log (x)\right )^2}\right ) \, dx\\ &=\frac {12}{5} \int \frac {x^2}{\left (4 x+x^2+\log (5)-\log (x)\right )^2} \, dx+\frac {12}{5} \int \frac {\log \left (\frac {x}{5}\right )}{\left (4 x+x^2+\log (5)-\log (x)\right )^2} \, dx-\frac {48}{5} \int \frac {1}{x \left (4 x+x^2+\log (5)-\log (x)\right )^2} \, dx+\frac {96}{5} \int \frac {x}{\left (4 x+x^2+\log (5)-\log (x)\right )^2} \, dx+36 \int \frac {1}{\left (4 x+x^2+\log (5)-\log (x)\right )^2} \, dx\\ &=\frac {12}{5} \int \frac {x^2}{\left (4 x+x^2+\log (5)-\log (x)\right )^2} \, dx-\frac {48}{5} \int \frac {1}{x \left (4 x+x^2+\log (5)-\log (x)\right )^2} \, dx+12 \operatorname {Subst}\left (\int \frac {\log (x)}{\left (20 x+25 x^2+\log (5)-\log (5 x)\right )^2} \, dx,x,\frac {x}{5}\right )+\frac {96}{5} \int \frac {x}{\left (4 x+x^2+\log (5)-\log (x)\right )^2} \, dx+36 \int \frac {1}{\left (4 x+x^2+\log (5)-\log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.52, size = 22, normalized size = 1.00 \begin {gather*} -\frac {12 (4+x)}{5 \left (4 x+x^2+\log (5)-\log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 20, normalized size = 0.91 \begin {gather*} -\frac {12 \, {\left (x + 4\right )}}{5 \, {\left (x^{2} + 4 \, x - \log \left (\frac {1}{5} \, x\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 20, normalized size = 0.91 \begin {gather*} -\frac {12 \, {\left (x + 4\right )}}{5 \, {\left (x^{2} + 4 \, x - \log \left (\frac {1}{5} \, x\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 21, normalized size = 0.95
method | result | size |
risch | \(-\frac {12 \left (4+x \right )}{5 \left (x^{2}+4 x -\ln \left (\frac {x}{5}\right )\right )}\) | \(21\) |
norman | \(\frac {-\frac {48}{5}-\frac {12 x}{5}}{x^{2}+4 x -\ln \left (\frac {x}{5}\right )}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.85, size = 20, normalized size = 0.91 \begin {gather*} -\frac {12 \, {\left (x + 4\right )}}{5 \, {\left (x^{2} + 4 \, x + \log \relax (5) - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.31, size = 22, normalized size = 1.00 \begin {gather*} -\frac {\frac {12\,x}{5}+\frac {48}{5}}{4\,x-\ln \left (\frac {x}{5}\right )+x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 19, normalized size = 0.86 \begin {gather*} \frac {12 x + 48}{- 5 x^{2} - 20 x + 5 \log {\left (\frac {x}{5} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________