Optimal. Leaf size=28 \[ e^4+x^2+\frac {x}{2 x-\log (x)+\log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.60, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1+\left (1+8 x^3\right ) \log \left (\frac {1}{x}\right )+\left (2+16 x^3\right ) \log ^2\left (\frac {1}{x}\right )+\left (\left (-1-8 x^2\right ) \log \left (\frac {1}{x}\right )+\left (-2-16 x^2\right ) \log ^2\left (\frac {1}{x}\right )\right ) \log (x)+\left (2 x \log \left (\frac {1}{x}\right )+4 x \log ^2\left (\frac {1}{x}\right )\right ) \log ^2(x)+\left (\left (1+8 x^2\right ) \log \left (\frac {1}{x}\right )+\left (2+16 x^2\right ) \log ^2\left (\frac {1}{x}\right )+\left (-4 x \log \left (\frac {1}{x}\right )-8 x \log ^2\left (\frac {1}{x}\right )\right ) \log (x)\right ) \log \left (\frac {1+2 \log \left (\frac {1}{x}\right )}{\log \left (\frac {1}{x}\right )}\right )+\left (2 x \log \left (\frac {1}{x}\right )+4 x \log ^2\left (\frac {1}{x}\right )\right ) \log ^2\left (\frac {1+2 \log \left (\frac {1}{x}\right )}{\log \left (\frac {1}{x}\right )}\right )}{4 x^2 \log \left (\frac {1}{x}\right )+8 x^2 \log ^2\left (\frac {1}{x}\right )+\left (-4 x \log \left (\frac {1}{x}\right )-8 x \log ^2\left (\frac {1}{x}\right )\right ) \log (x)+\left (\log \left (\frac {1}{x}\right )+2 \log ^2\left (\frac {1}{x}\right )\right ) \log ^2(x)+\left (4 x \log \left (\frac {1}{x}\right )+8 x \log ^2\left (\frac {1}{x}\right )+\left (-2 \log \left (\frac {1}{x}\right )-4 \log ^2\left (\frac {1}{x}\right )\right ) \log (x)\right ) \log \left (\frac {1+2 \log \left (\frac {1}{x}\right )}{\log \left (\frac {1}{x}\right )}\right )+\left (\log \left (\frac {1}{x}\right )+2 \log ^2\left (\frac {1}{x}\right )\right ) \log ^2\left (\frac {1+2 \log \left (\frac {1}{x}\right )}{\log \left (\frac {1}{x}\right )}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1+\log \left (\frac {1}{x}\right ) \left (1+8 x^3+2 x \log ^2(x)+\left (1+8 x^2\right ) \log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )+2 x \log ^2\left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )-\log (x) \left (1+8 x^2+4 x \log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )\right )\right )+2 \log ^2\left (\frac {1}{x}\right ) \left (1+8 x^3+2 x \log ^2(x)+\left (1+8 x^2\right ) \log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )+2 x \log ^2\left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )-\log (x) \left (1+8 x^2+4 x \log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )\right )\right )}{\log \left (\frac {1}{x}\right ) \left (1+2 \log \left (\frac {1}{x}\right )\right ) \left (2 x-\log (x)+\log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )\right )^2} \, dx\\ &=\int \left (2 x+\frac {-1+\log \left (\frac {1}{x}\right )-2 x \log \left (\frac {1}{x}\right )+2 \log ^2\left (\frac {1}{x}\right )-4 x \log ^2\left (\frac {1}{x}\right )}{\log \left (\frac {1}{x}\right ) \left (1+2 \log \left (\frac {1}{x}\right )\right ) \left (2 x-\log (x)+\log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )\right )^2}+\frac {1}{2 x-\log (x)+\log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )}\right ) \, dx\\ &=x^2+\int \frac {-1+\log \left (\frac {1}{x}\right )-2 x \log \left (\frac {1}{x}\right )+2 \log ^2\left (\frac {1}{x}\right )-4 x \log ^2\left (\frac {1}{x}\right )}{\log \left (\frac {1}{x}\right ) \left (1+2 \log \left (\frac {1}{x}\right )\right ) \left (2 x-\log (x)+\log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )\right )^2} \, dx+\int \frac {1}{2 x-\log (x)+\log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )} \, dx\\ &=x^2+\int \frac {1}{2 x-\log (x)+\log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )} \, dx+\int \left (\frac {1}{\left (1+2 \log \left (\frac {1}{x}\right )\right ) \left (2 x-\log (x)+\log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )\right )^2}-\frac {2 x}{\left (1+2 \log \left (\frac {1}{x}\right )\right ) \left (2 x-\log (x)+\log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )\right )^2}-\frac {1}{\log \left (\frac {1}{x}\right ) \left (1+2 \log \left (\frac {1}{x}\right )\right ) \left (2 x-\log (x)+\log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )\right )^2}+\frac {2 \log \left (\frac {1}{x}\right )}{\left (1+2 \log \left (\frac {1}{x}\right )\right ) \left (2 x-\log (x)+\log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )\right )^2}-\frac {4 x \log \left (\frac {1}{x}\right )}{\left (1+2 \log \left (\frac {1}{x}\right )\right ) \left (2 x-\log (x)+\log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )\right )^2}\right ) \, dx\\ &=x^2-2 \int \frac {x}{\left (1+2 \log \left (\frac {1}{x}\right )\right ) \left (2 x-\log (x)+\log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )\right )^2} \, dx+2 \int \frac {\log \left (\frac {1}{x}\right )}{\left (1+2 \log \left (\frac {1}{x}\right )\right ) \left (2 x-\log (x)+\log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )\right )^2} \, dx-4 \int \frac {x \log \left (\frac {1}{x}\right )}{\left (1+2 \log \left (\frac {1}{x}\right )\right ) \left (2 x-\log (x)+\log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )\right )^2} \, dx+\int \frac {1}{\left (1+2 \log \left (\frac {1}{x}\right )\right ) \left (2 x-\log (x)+\log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )\right )^2} \, dx-\int \frac {1}{\log \left (\frac {1}{x}\right ) \left (1+2 \log \left (\frac {1}{x}\right )\right ) \left (2 x-\log (x)+\log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )\right )^2} \, dx+\int \frac {1}{2 x-\log (x)+\log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 25, normalized size = 0.89 \begin {gather*} x^2+\frac {x}{2 x-\log (x)+\log \left (2+\frac {1}{\log \left (\frac {1}{x}\right )}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.80, size = 62, normalized size = 2.21 \begin {gather*} \frac {2 \, x^{3} + x^{2} \log \left (\frac {2 \, \log \left (\frac {1}{x}\right ) + 1}{\log \left (\frac {1}{x}\right )}\right ) + x^{2} \log \left (\frac {1}{x}\right ) + x}{2 \, x + \log \left (\frac {2 \, \log \left (\frac {1}{x}\right ) + 1}{\log \left (\frac {1}{x}\right )}\right ) + \log \left (\frac {1}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.96, size = 28, normalized size = 1.00 \begin {gather*} x^{2} + \frac {x}{2 \, x - \log \relax (x) + \log \left (2 \, \log \relax (x) - 1\right ) - \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.32, size = 136, normalized size = 4.86
method | result | size |
risch | \(x^{2}+\frac {2 x}{-i \pi \,\mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-\frac {1}{2}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-\frac {1}{2}\right )}{\ln \relax (x )}\right )+i \pi \,\mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-\frac {1}{2}\right )}{\ln \relax (x )}\right )^{2}+i \pi \,\mathrm {csgn}\left (i \left (\ln \relax (x )-\frac {1}{2}\right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-\frac {1}{2}\right )}{\ln \relax (x )}\right )^{2}-i \pi \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-\frac {1}{2}\right )}{\ln \relax (x )}\right )^{3}+2 \ln \relax (2)+4 x -2 \ln \relax (x )-2 \ln \left (\ln \relax (x )\right )+2 \ln \left (\ln \relax (x )-\frac {1}{2}\right )}\) | \(136\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.66, size = 56, normalized size = 2.00 \begin {gather*} \frac {2 \, x^{3} - x^{2} \log \relax (x) + x^{2} \log \left (2 \, \log \relax (x) - 1\right ) - x^{2} \log \left (\log \relax (x)\right ) + x}{2 \, x - \log \relax (x) + \log \left (2 \, \log \relax (x) - 1\right ) - \log \left (\log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\ln \left (\frac {2\,\ln \left (\frac {1}{x}\right )+1}{\ln \left (\frac {1}{x}\right )}\right )}^2\,\left (4\,x\,{\ln \left (\frac {1}{x}\right )}^2+2\,x\,\ln \left (\frac {1}{x}\right )\right )+\ln \left (\frac {1}{x}\right )\,\left (8\,x^3+1\right )+\ln \left (\frac {2\,\ln \left (\frac {1}{x}\right )+1}{\ln \left (\frac {1}{x}\right )}\right )\,\left (\ln \left (\frac {1}{x}\right )\,\left (8\,x^2+1\right )-\ln \relax (x)\,\left (8\,x\,{\ln \left (\frac {1}{x}\right )}^2+4\,x\,\ln \left (\frac {1}{x}\right )\right )+{\ln \left (\frac {1}{x}\right )}^2\,\left (16\,x^2+2\right )\right )-\ln \relax (x)\,\left (\left (16\,x^2+2\right )\,{\ln \left (\frac {1}{x}\right )}^2+\left (8\,x^2+1\right )\,\ln \left (\frac {1}{x}\right )\right )+{\ln \relax (x)}^2\,\left (4\,x\,{\ln \left (\frac {1}{x}\right )}^2+2\,x\,\ln \left (\frac {1}{x}\right )\right )+{\ln \left (\frac {1}{x}\right )}^2\,\left (16\,x^3+2\right )-1}{\ln \left (\frac {2\,\ln \left (\frac {1}{x}\right )+1}{\ln \left (\frac {1}{x}\right )}\right )\,\left (4\,x\,\ln \left (\frac {1}{x}\right )-\ln \relax (x)\,\left (4\,{\ln \left (\frac {1}{x}\right )}^2+2\,\ln \left (\frac {1}{x}\right )\right )+8\,x\,{\ln \left (\frac {1}{x}\right )}^2\right )-\ln \relax (x)\,\left (8\,x\,{\ln \left (\frac {1}{x}\right )}^2+4\,x\,\ln \left (\frac {1}{x}\right )\right )+{\ln \relax (x)}^2\,\left (2\,{\ln \left (\frac {1}{x}\right )}^2+\ln \left (\frac {1}{x}\right )\right )+4\,x^2\,\ln \left (\frac {1}{x}\right )+{\ln \left (\frac {2\,\ln \left (\frac {1}{x}\right )+1}{\ln \left (\frac {1}{x}\right )}\right )}^2\,\left (2\,{\ln \left (\frac {1}{x}\right )}^2+\ln \left (\frac {1}{x}\right )\right )+8\,x^2\,{\ln \left (\frac {1}{x}\right )}^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 24, normalized size = 0.86 \begin {gather*} x^{2} + \frac {x}{2 x - \log {\relax (x )} + \log {\left (- \frac {1 - 2 \log {\relax (x )}}{\log {\relax (x )}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________