Optimal. Leaf size=31 \[ 5-e^{\left (4+e^{\frac {4}{e^3}}\right )^2 x^2-\frac {5}{1+x^2}} \]
________________________________________________________________________________________
Rubi [F] time = 6.81, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-5+16 x^2+16 x^4+e^{\frac {8}{e^3}} \left (x^2+x^4\right )+e^{\frac {4}{e^3}} \left (8 x^2+8 x^4\right )}{1+x^2}\right ) \left (-42 x-64 x^3-32 x^5+e^{\frac {4}{e^3}} \left (-16 x-32 x^3-16 x^5\right )+e^{\frac {8}{e^3}} \left (-2 x-4 x^3-2 x^5\right )\right )}{1+2 x^2+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {-5+16 x^2+16 x^4+e^{\frac {8}{e^3}} \left (x^2+x^4\right )+e^{\frac {4}{e^3}} \left (8 x^2+8 x^4\right )}{1+x^2}\right ) \left (-42 x-64 x^3-32 x^5+e^{\frac {4}{e^3}} \left (-16 x-32 x^3-16 x^5\right )+e^{\frac {8}{e^3}} \left (-2 x-4 x^3-2 x^5\right )\right )}{\left (1+x^2\right )^2} \, dx\\ &=\int \frac {\exp \left (\frac {-5+\left (4+e^{\frac {4}{e^3}}\right )^2 x^2+\left (4+e^{\frac {4}{e^3}}\right )^2 x^4}{1+x^2}\right ) \left (-42 x-64 x^3-32 x^5+e^{\frac {4}{e^3}} \left (1+\frac {e^{\frac {4}{e^3}}}{8}\right ) \left (-16 x-32 x^3-16 x^5\right )\right )}{\left (1+x^2\right )^2} \, dx\\ &=\int \left (-2 \exp \left (\frac {-5+\left (4+e^{\frac {4}{e^3}}\right )^2 x^2+\left (4+e^{\frac {4}{e^3}}\right )^2 x^4}{1+x^2}\right ) \left (4+e^{\frac {4}{e^3}}\right )^2 x-\frac {10 \exp \left (\frac {-5+\left (4+e^{\frac {4}{e^3}}\right )^2 x^2+\left (4+e^{\frac {4}{e^3}}\right )^2 x^4}{1+x^2}\right ) x}{\left (1+x^2\right )^2}\right ) \, dx\\ &=-\left (10 \int \frac {\exp \left (\frac {-5+\left (4+e^{\frac {4}{e^3}}\right )^2 x^2+\left (4+e^{\frac {4}{e^3}}\right )^2 x^4}{1+x^2}\right ) x}{\left (1+x^2\right )^2} \, dx\right )-\left (2 \left (4+e^{\frac {4}{e^3}}\right )^2\right ) \int \exp \left (\frac {-5+\left (4+e^{\frac {4}{e^3}}\right )^2 x^2+\left (4+e^{\frac {4}{e^3}}\right )^2 x^4}{1+x^2}\right ) x \, dx\\ &=-\left (5 \operatorname {Subst}\left (\int \frac {\exp \left (\frac {-5+\left (4+e^{\frac {4}{e^3}}\right )^2 x+\left (4+e^{\frac {4}{e^3}}\right )^2 x^2}{1+x}\right )}{(1+x)^2} \, dx,x,x^2\right )\right )-\left (4+e^{\frac {4}{e^3}}\right )^2 \operatorname {Subst}\left (\int \exp \left (\frac {-5+\left (4+e^{\frac {4}{e^3}}\right )^2 x+\left (4+e^{\frac {4}{e^3}}\right )^2 x^2}{1+x}\right ) \, dx,x,x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 44, normalized size = 1.42 \begin {gather*} -e^{\frac {-5+\left (4+e^{\frac {4}{e^3}}\right )^2 x^2+\left (4+e^{\frac {4}{e^3}}\right )^2 x^4}{1+x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 50, normalized size = 1.61 \begin {gather*} -e^{\left (\frac {16 \, x^{4} + 16 \, x^{2} + {\left (x^{4} + x^{2}\right )} e^{\left (8 \, e^{\left (-3\right )}\right )} + 8 \, {\left (x^{4} + x^{2}\right )} e^{\left (4 \, e^{\left (-3\right )}\right )} - 5}{x^{2} + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.91, size = 103, normalized size = 3.32 \begin {gather*} -e^{\left (\frac {x^{4} e^{\left (8 \, e^{\left (-3\right )}\right )}}{x^{2} + 1} + \frac {8 \, x^{4} e^{\left (4 \, e^{\left (-3\right )}\right )}}{x^{2} + 1} + \frac {16 \, x^{4}}{x^{2} + 1} + \frac {x^{2} e^{\left (8 \, e^{\left (-3\right )}\right )}}{x^{2} + 1} + \frac {8 \, x^{2} e^{\left (4 \, e^{\left (-3\right )}\right )}}{x^{2} + 1} + \frac {16 \, x^{2}}{x^{2} + 1} - \frac {5}{x^{2} + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.49, size = 62, normalized size = 2.00
method | result | size |
risch | \(-{\mathrm e}^{\frac {{\mathrm e}^{8 \,{\mathrm e}^{-3}} x^{4}+8 \,{\mathrm e}^{4 \,{\mathrm e}^{-3}} x^{4}+16 x^{4}+{\mathrm e}^{8 \,{\mathrm e}^{-3}} x^{2}+8 \,{\mathrm e}^{4 \,{\mathrm e}^{-3}} x^{2}+16 x^{2}-5}{x^{2}+1}}\) | \(62\) |
gosper | \(-{\mathrm e}^{\frac {{\mathrm e}^{8 \,{\mathrm e}^{-3}} x^{4}+8 \,{\mathrm e}^{4 \,{\mathrm e}^{-3}} x^{4}+16 x^{4}+{\mathrm e}^{8 \,{\mathrm e}^{-3}} x^{2}+8 \,{\mathrm e}^{4 \,{\mathrm e}^{-3}} x^{2}+16 x^{2}-5}{x^{2}+1}}\) | \(74\) |
norman | \(\frac {-x^{2} {\mathrm e}^{\frac {\left (x^{4}+x^{2}\right ) {\mathrm e}^{8 \,{\mathrm e}^{-3}}+\left (8 x^{4}+8 x^{2}\right ) {\mathrm e}^{4 \,{\mathrm e}^{-3}}+16 x^{4}+16 x^{2}-5}{x^{2}+1}}-{\mathrm e}^{\frac {\left (x^{4}+x^{2}\right ) {\mathrm e}^{8 \,{\mathrm e}^{-3}}+\left (8 x^{4}+8 x^{2}\right ) {\mathrm e}^{4 \,{\mathrm e}^{-3}}+16 x^{4}+16 x^{2}-5}{x^{2}+1}}}{x^{2}+1}\) | \(131\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.42, size = 37, normalized size = 1.19 \begin {gather*} -e^{\left (x^{2} e^{\left (8 \, e^{\left (-3\right )}\right )} + 8 \, x^{2} e^{\left (4 \, e^{\left (-3\right )}\right )} + 16 \, x^{2} - \frac {5}{x^{2} + 1}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.59, size = 108, normalized size = 3.48 \begin {gather*} -{\mathrm {e}}^{\frac {16\,x^2}{x^2+1}}\,{\mathrm {e}}^{\frac {16\,x^4}{x^2+1}}\,{\mathrm {e}}^{-\frac {5}{x^2+1}}\,{\mathrm {e}}^{\frac {x^2\,{\mathrm {e}}^{8\,{\mathrm {e}}^{-3}}}{x^2+1}}\,{\mathrm {e}}^{\frac {x^4\,{\mathrm {e}}^{8\,{\mathrm {e}}^{-3}}}{x^2+1}}\,{\mathrm {e}}^{\frac {8\,x^2\,{\mathrm {e}}^{4\,{\mathrm {e}}^{-3}}}{x^2+1}}\,{\mathrm {e}}^{\frac {8\,x^4\,{\mathrm {e}}^{4\,{\mathrm {e}}^{-3}}}{x^2+1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.40, size = 49, normalized size = 1.58 \begin {gather*} - e^{\frac {16 x^{4} + 16 x^{2} + \left (x^{4} + x^{2}\right ) e^{\frac {8}{e^{3}}} + \left (8 x^{4} + 8 x^{2}\right ) e^{\frac {4}{e^{3}}} - 5}{x^{2} + 1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________