Optimal. Leaf size=34 \[ e^{3+\frac {3 (-x+\log (3))}{(-5+x) x}} \left (e^{e^x x^2}-x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 40.68, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {-18 x+3 x^2+3 \log (3)+\left (-5 x+x^2\right ) \log \left (e^{e^x x^2}-x\right )}{-5 x+x^2}\right ) \left (-25 x^2+7 x^3-x^4+\left (-15 x+6 x^2\right ) \log (3)+e^{e^x x^2} \left (3 x^2+e^x \left (50 x^3+5 x^4-8 x^5+x^6\right )+(15-6 x) \log (3)\right )\right )}{-25 x^3+10 x^4-x^5+e^{e^x x^2} \left (25 x^2-10 x^3+x^4\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {-18 x+3 x^2+3 \log (3)+\left (-5 x+x^2\right ) \log \left (e^{e^x x^2}-x\right )}{(-5+x) x}\right ) \left (-25 x^2+7 x^3-x^4+\left (-15 x+6 x^2\right ) \log (3)+e^{e^x x^2} \left (3 x^2+e^x \left (50 x^3+5 x^4-8 x^5+x^6\right )+(15-6 x) \log (3)\right )\right )}{(5-x)^2 \left (e^{e^x x^2}-x\right ) x^2} \, dx\\ &=\int \frac {3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}} \left (-25 x^2+7 x^3-x^4+3 x (-5+2 x) \log (3)+e^{e^x x^2} \left (3 x^2+e^x (-5+x)^2 x^3 (2+x)+(15-6 x) \log (3)\right )\right )}{(5-x)^2 x^2} \, dx\\ &=\int \left (-\frac {25\ 3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}}}{(-5+x)^2}+\frac {7\ 3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}} x}{(-5+x)^2}-\frac {3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}} x^2}{(-5+x)^2}+\frac {3^{1+\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}} (-5+2 x) \log (3)}{(-5+x)^2 x}+\frac {3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}+e^x x^2} \left (3 x^2+50 e^x x^3+5 e^x x^4-8 e^x x^5+e^x x^6+15 \log (3)-6 x \log (3)\right )}{(-5+x)^2 x^2}\right ) \, dx\\ &=7 \int \frac {3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}} x}{(-5+x)^2} \, dx-25 \int \frac {3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}}}{(-5+x)^2} \, dx+\log (3) \int \frac {3^{1+\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}} (-5+2 x)}{(-5+x)^2 x} \, dx-\int \frac {3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}} x^2}{(-5+x)^2} \, dx+\int \frac {3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}+e^x x^2} \left (3 x^2+50 e^x x^3+5 e^x x^4-8 e^x x^5+e^x x^6+15 \log (3)-6 x \log (3)\right )}{(-5+x)^2 x^2} \, dx\\ &=\frac {3^{-\frac {3}{(5-x) x}} e^{\frac {3 (6-x)}{5-x}+e^x x^2} (5-2 x)}{\left (\frac {1}{(5-x) x^2}-\frac {1}{(5-x)^2 x}\right ) (5-x)^2 x^2}+7 \int \left (\frac {5\ 3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}}}{(-5+x)^2}+\frac {3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}}}{-5+x}\right ) \, dx-25 \int \frac {3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}}}{(-5+x)^2} \, dx+\log (3) \int \left (\frac {3^{1+\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}}}{(-5+x)^2}+\frac {3^{1+\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}}}{5 (-5+x)}-\frac {3^{1+\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}}}{5 x}\right ) \, dx-\int \left (3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}}+\frac {25\ 3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}}}{(-5+x)^2}+\frac {10\ 3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}}}{-5+x}\right ) \, dx\\ &=\frac {3^{-\frac {3}{(5-x) x}} e^{\frac {3 (6-x)}{5-x}+e^x x^2} (5-2 x)}{\left (\frac {1}{(5-x) x^2}-\frac {1}{(5-x)^2 x}\right ) (5-x)^2 x^2}+7 \int \frac {3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}}}{-5+x} \, dx-10 \int \frac {3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}}}{-5+x} \, dx-2 \left (25 \int \frac {3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}}}{(-5+x)^2} \, dx\right )+35 \int \frac {3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}}}{(-5+x)^2} \, dx+\frac {1}{5} \log (3) \int \frac {3^{1+\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}}}{-5+x} \, dx-\frac {1}{5} \log (3) \int \frac {3^{1+\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}}}{x} \, dx+\log (3) \int \frac {3^{1+\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}}}{(-5+x)^2} \, dx-\int 3^{\frac {3}{(-5+x) x}} e^{\frac {3 (-6+x)}{-5+x}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 37, normalized size = 1.09 \begin {gather*} 3^{\frac {3}{(-5+x) x}} e^{3-\frac {3}{-5+x}} \left (e^{e^x x^2}-x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 44, normalized size = 1.29 \begin {gather*} e^{\left (\frac {3 \, x^{2} + {\left (x^{2} - 5 \, x\right )} \log \left (-x + e^{\left (x^{2} e^{x}\right )}\right ) - 18 \, x + 3 \, \log \relax (3)}{x^{2} - 5 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 4.24, size = 90, normalized size = 2.65 \begin {gather*} e^{\left (\frac {x^{2} \log \left (-x + e^{\left (x^{2} e^{x}\right )}\right )}{x^{2} - 5 \, x} + \frac {3 \, x^{2}}{x^{2} - 5 \, x} - \frac {5 \, x \log \left (-x + e^{\left (x^{2} e^{x}\right )}\right )}{x^{2} - 5 \, x} - \frac {18 \, x}{x^{2} - 5 \, x} + \frac {3 \, \log \relax (3)}{x^{2} - 5 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 55, normalized size = 1.62
method | result | size |
risch | \({\mathrm e}^{\frac {\ln \left ({\mathrm e}^{{\mathrm e}^{x} x^{2}}-x \right ) x^{2}-5 \ln \left ({\mathrm e}^{{\mathrm e}^{x} x^{2}}-x \right ) x +3 x^{2}+3 \ln \relax (3)-18 x}{\left (x -5\right ) x}}\) | \(55\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.98, size = 43, normalized size = 1.26 \begin {gather*} -{\left (x e^{3} - e^{\left (x^{2} e^{x} + 3\right )}\right )} e^{\left (\frac {3 \, \log \relax (3)}{5 \, {\left (x - 5\right )}} - \frac {3 \, \log \relax (3)}{5 \, x} - \frac {3}{x - 5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {{\mathrm {e}}^{\frac {18\,x-3\,\ln \relax (3)-3\,x^2+\ln \left ({\mathrm {e}}^{x^2\,{\mathrm {e}}^x}-x\right )\,\left (5\,x-x^2\right )}{5\,x-x^2}}\,\left (\ln \relax (3)\,\left (15\,x-6\,x^2\right )-{\mathrm {e}}^{x^2\,{\mathrm {e}}^x}\,\left ({\mathrm {e}}^x\,\left (x^6-8\,x^5+5\,x^4+50\,x^3\right )-\ln \relax (3)\,\left (6\,x-15\right )+3\,x^2\right )+25\,x^2-7\,x^3+x^4\right )}{{\mathrm {e}}^{x^2\,{\mathrm {e}}^x}\,\left (x^4-10\,x^3+25\,x^2\right )-25\,x^3+10\,x^4-x^5} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________