Optimal. Leaf size=29 \[ \frac {16}{\log ^4\left (\frac {4}{5-\frac {25+x}{5+\frac {1}{1-x \log (x)}}}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.47, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1216-64 x+(-1600-768 x) \log (x)+320 x^2 \log ^2(x)}{\left (-30+6 x+\left (25 x-11 x^2\right ) \log (x)+5 x^3 \log ^2(x)\right ) \log ^5\left (\frac {24-20 x \log (x)}{5-x+x^2 \log (x)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1216+64 x-(-1600-768 x) \log (x)-320 x^2 \log ^2(x)}{\left (30-6 x-\left (25 x-11 x^2\right ) \log (x)-5 x^3 \log ^2(x)\right ) \log ^5\left (-\frac {4 (-6+5 x \log (x))}{5-x+x^2 \log (x)}\right )} \, dx\\ &=\int \frac {64 \left (19+x+25 \log (x)+12 x \log (x)-5 x^2 \log ^2(x)\right )}{\left (30-6 x-\left (25 x-11 x^2\right ) \log (x)-5 x^3 \log ^2(x)\right ) \log ^5\left (-\frac {4 (-6+5 x \log (x))}{5-x+x^2 \log (x)}\right )} \, dx\\ &=64 \int \frac {19+x+25 \log (x)+12 x \log (x)-5 x^2 \log ^2(x)}{\left (30-6 x-\left (25 x-11 x^2\right ) \log (x)-5 x^3 \log ^2(x)\right ) \log ^5\left (-\frac {4 (-6+5 x \log (x))}{5-x+x^2 \log (x)}\right )} \, dx\\ &=64 \int \left (\frac {19}{\left (30-6 x-25 x \log (x)+11 x^2 \log (x)-5 x^3 \log ^2(x)\right ) \log ^5\left (-\frac {4 (-6+5 x \log (x))}{5-x+x^2 \log (x)}\right )}+\frac {x}{\left (30-6 x-25 x \log (x)+11 x^2 \log (x)-5 x^3 \log ^2(x)\right ) \log ^5\left (-\frac {4 (-6+5 x \log (x))}{5-x+x^2 \log (x)}\right )}+\frac {25 \log (x)}{\left (30-6 x-25 x \log (x)+11 x^2 \log (x)-5 x^3 \log ^2(x)\right ) \log ^5\left (-\frac {4 (-6+5 x \log (x))}{5-x+x^2 \log (x)}\right )}+\frac {12 x \log (x)}{\left (30-6 x-25 x \log (x)+11 x^2 \log (x)-5 x^3 \log ^2(x)\right ) \log ^5\left (-\frac {4 (-6+5 x \log (x))}{5-x+x^2 \log (x)}\right )}+\frac {5 x^2 \log ^2(x)}{\left (-30+6 x+25 x \log (x)-11 x^2 \log (x)+5 x^3 \log ^2(x)\right ) \log ^5\left (-\frac {4 (-6+5 x \log (x))}{5-x+x^2 \log (x)}\right )}\right ) \, dx\\ &=64 \int \frac {x}{\left (30-6 x-25 x \log (x)+11 x^2 \log (x)-5 x^3 \log ^2(x)\right ) \log ^5\left (-\frac {4 (-6+5 x \log (x))}{5-x+x^2 \log (x)}\right )} \, dx+320 \int \frac {x^2 \log ^2(x)}{\left (-30+6 x+25 x \log (x)-11 x^2 \log (x)+5 x^3 \log ^2(x)\right ) \log ^5\left (-\frac {4 (-6+5 x \log (x))}{5-x+x^2 \log (x)}\right )} \, dx+768 \int \frac {x \log (x)}{\left (30-6 x-25 x \log (x)+11 x^2 \log (x)-5 x^3 \log ^2(x)\right ) \log ^5\left (-\frac {4 (-6+5 x \log (x))}{5-x+x^2 \log (x)}\right )} \, dx+1216 \int \frac {1}{\left (30-6 x-25 x \log (x)+11 x^2 \log (x)-5 x^3 \log ^2(x)\right ) \log ^5\left (-\frac {4 (-6+5 x \log (x))}{5-x+x^2 \log (x)}\right )} \, dx+1600 \int \frac {\log (x)}{\left (30-6 x-25 x \log (x)+11 x^2 \log (x)-5 x^3 \log ^2(x)\right ) \log ^5\left (-\frac {4 (-6+5 x \log (x))}{5-x+x^2 \log (x)}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.39, size = 26, normalized size = 0.90 \begin {gather*} \frac {16}{\log ^4\left (\frac {24-20 x \log (x)}{5-x+x^2 \log (x)}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 27, normalized size = 0.93 \begin {gather*} \frac {16}{\log \left (-\frac {4 \, {\left (5 \, x \log \relax (x) - 6\right )}}{x^{2} \log \relax (x) - x + 5}\right )^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.60, size = 603, normalized size = 20.79 \begin {gather*} \frac {16 \, {\left (5 \, x^{2} \log \relax (x)^{2} - 12 \, x \log \relax (x) - x - 25 \, \log \relax (x) - 19\right )}}{5 \, x^{2} \log \left (x^{2} \log \relax (x) - x + 5\right )^{4} \log \relax (x)^{2} - 20 \, x^{2} \log \left (x^{2} \log \relax (x) - x + 5\right )^{3} \log \left (-20 \, x \log \relax (x) + 24\right ) \log \relax (x)^{2} + 30 \, x^{2} \log \left (x^{2} \log \relax (x) - x + 5\right )^{2} \log \left (-20 \, x \log \relax (x) + 24\right )^{2} \log \relax (x)^{2} - 20 \, x^{2} \log \left (x^{2} \log \relax (x) - x + 5\right ) \log \left (-20 \, x \log \relax (x) + 24\right )^{3} \log \relax (x)^{2} + 5 \, x^{2} \log \left (-20 \, x \log \relax (x) + 24\right )^{4} \log \relax (x)^{2} - 12 \, x \log \left (x^{2} \log \relax (x) - x + 5\right )^{4} \log \relax (x) + 48 \, x \log \left (x^{2} \log \relax (x) - x + 5\right )^{3} \log \left (-20 \, x \log \relax (x) + 24\right ) \log \relax (x) - 72 \, x \log \left (x^{2} \log \relax (x) - x + 5\right )^{2} \log \left (-20 \, x \log \relax (x) + 24\right )^{2} \log \relax (x) + 48 \, x \log \left (x^{2} \log \relax (x) - x + 5\right ) \log \left (-20 \, x \log \relax (x) + 24\right )^{3} \log \relax (x) - 12 \, x \log \left (-20 \, x \log \relax (x) + 24\right )^{4} \log \relax (x) - x \log \left (x^{2} \log \relax (x) - x + 5\right )^{4} + 4 \, x \log \left (x^{2} \log \relax (x) - x + 5\right )^{3} \log \left (-20 \, x \log \relax (x) + 24\right ) - 6 \, x \log \left (x^{2} \log \relax (x) - x + 5\right )^{2} \log \left (-20 \, x \log \relax (x) + 24\right )^{2} + 4 \, x \log \left (x^{2} \log \relax (x) - x + 5\right ) \log \left (-20 \, x \log \relax (x) + 24\right )^{3} - x \log \left (-20 \, x \log \relax (x) + 24\right )^{4} - 25 \, \log \left (x^{2} \log \relax (x) - x + 5\right )^{4} \log \relax (x) + 100 \, \log \left (x^{2} \log \relax (x) - x + 5\right )^{3} \log \left (-20 \, x \log \relax (x) + 24\right ) \log \relax (x) - 150 \, \log \left (x^{2} \log \relax (x) - x + 5\right )^{2} \log \left (-20 \, x \log \relax (x) + 24\right )^{2} \log \relax (x) + 100 \, \log \left (x^{2} \log \relax (x) - x + 5\right ) \log \left (-20 \, x \log \relax (x) + 24\right )^{3} \log \relax (x) - 25 \, \log \left (-20 \, x \log \relax (x) + 24\right )^{4} \log \relax (x) - 19 \, \log \left (x^{2} \log \relax (x) - x + 5\right )^{4} + 76 \, \log \left (x^{2} \log \relax (x) - x + 5\right )^{3} \log \left (-20 \, x \log \relax (x) + 24\right ) - 114 \, \log \left (x^{2} \log \relax (x) - x + 5\right )^{2} \log \left (-20 \, x \log \relax (x) + 24\right )^{2} + 76 \, \log \left (x^{2} \log \relax (x) - x + 5\right ) \log \left (-20 \, x \log \relax (x) + 24\right )^{3} - 19 \, \log \left (-20 \, x \log \relax (x) + 24\right )^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.10, size = 238, normalized size = 8.21
method | result | size |
risch | \(\frac {256}{\left (4 \ln \relax (2)+2 \ln \relax (5)+2 i \pi +2 \ln \left (x \ln \relax (x )-\frac {6}{5}\right )-2 \ln \left (x^{2} \ln \relax (x )+5-x \right )-i \pi \,\mathrm {csgn}\left (i \left (x \ln \relax (x )-\frac {6}{5}\right )\right ) \mathrm {csgn}\left (\frac {i}{x^{2} \ln \relax (x )+5-x}\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )-\frac {6}{5}\right )}{x^{2} \ln \relax (x )+5-x}\right )+i \pi \,\mathrm {csgn}\left (i \left (x \ln \relax (x )-\frac {6}{5}\right )\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )-\frac {6}{5}\right )}{x^{2} \ln \relax (x )+5-x}\right )^{2}+i \pi \,\mathrm {csgn}\left (\frac {i}{x^{2} \ln \relax (x )+5-x}\right ) \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )-\frac {6}{5}\right )}{x^{2} \ln \relax (x )+5-x}\right )^{2}-2 i \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )-\frac {6}{5}\right )}{x^{2} \ln \relax (x )+5-x}\right )^{2}+i \pi \mathrm {csgn}\left (\frac {i \left (x \ln \relax (x )-\frac {6}{5}\right )}{x^{2} \ln \relax (x )+5-x}\right )^{3}\right )^{4}}\) | \(238\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 1.51, size = 332, normalized size = 11.45 \begin {gather*} \frac {16}{\pi ^{4} - 8 i \, \pi ^{3} \log \relax (2) - 24 \, \pi ^{2} \log \relax (2)^{2} + 32 i \, \pi \log \relax (2)^{3} + 16 \, \log \relax (2)^{4} - 4 \, {\left (i \, \pi + 2 \, \log \relax (2) + \log \left (5 \, x \log \relax (x) - 6\right )\right )} \log \left (x^{2} \log \relax (x) - x + 5\right )^{3} + \log \left (x^{2} \log \relax (x) - x + 5\right )^{4} - 4 \, {\left (-i \, \pi - 2 \, \log \relax (2)\right )} \log \left (5 \, x \log \relax (x) - 6\right )^{3} + \log \left (5 \, x \log \relax (x) - 6\right )^{4} - 6 \, {\left (\pi ^{2} - 4 i \, \pi \log \relax (2) - 4 \, \log \relax (2)^{2} + 2 \, {\left (-i \, \pi - 2 \, \log \relax (2)\right )} \log \left (5 \, x \log \relax (x) - 6\right ) - \log \left (5 \, x \log \relax (x) - 6\right )^{2}\right )} \log \left (x^{2} \log \relax (x) - x + 5\right )^{2} - 6 \, {\left (\pi ^{2} - 4 i \, \pi \log \relax (2) - 4 \, \log \relax (2)^{2}\right )} \log \left (5 \, x \log \relax (x) - 6\right )^{2} - 4 \, {\left (-i \, \pi ^{3} - 6 \, \pi ^{2} \log \relax (2) + 12 i \, \pi \log \relax (2)^{2} + 8 \, \log \relax (2)^{3} + 3 \, {\left (i \, \pi + 2 \, \log \relax (2)\right )} \log \left (5 \, x \log \relax (x) - 6\right )^{2} + \log \left (5 \, x \log \relax (x) - 6\right )^{3} - 3 \, {\left (\pi ^{2} - 4 i \, \pi \log \relax (2) - 4 \, \log \relax (2)^{2}\right )} \log \left (5 \, x \log \relax (x) - 6\right )\right )} \log \left (x^{2} \log \relax (x) - x + 5\right ) - 4 \, {\left (i \, \pi ^{3} + 6 \, \pi ^{2} \log \relax (2) - 12 i \, \pi \log \relax (2)^{2} - 8 \, \log \relax (2)^{3}\right )} \log \left (5 \, x \log \relax (x) - 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.81, size = 27, normalized size = 0.93 \begin {gather*} \frac {16}{{\ln \left (-\frac {20\,x\,\ln \relax (x)-24}{x^2\,\ln \relax (x)-x+5}\right )}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.47, size = 22, normalized size = 0.76 \begin {gather*} \frac {16}{\log {\left (\frac {- 20 x \log {\relax (x )} + 24}{x^{2} \log {\relax (x )} - x + 5} \right )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________