Optimal. Leaf size=26 \[ \frac {5}{x \left (1-x+\frac {1}{5} \left (-1-e^{x^4} x\right )\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.29, antiderivative size = 19, normalized size of antiderivative = 0.73, number of steps used = 3, number of rules used = 3, integrand size = 67, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {6688, 12, 6687} \begin {gather*} \frac {25}{x \left (4-\left (e^{x^4}+5\right ) x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6687
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {50 \left (-2+\left (5+e^{x^4}\right ) x+2 e^{x^4} x^5\right )}{x^2 \left (4-\left (5+e^{x^4}\right ) x\right )^2} \, dx\\ &=50 \int \frac {-2+\left (5+e^{x^4}\right ) x+2 e^{x^4} x^5}{x^2 \left (4-\left (5+e^{x^4}\right ) x\right )^2} \, dx\\ &=\frac {25}{x \left (4-\left (5+e^{x^4}\right ) x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.30, size = 19, normalized size = 0.73 \begin {gather*} -\frac {25}{x \left (-4+5 x+e^{x^4} x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 21, normalized size = 0.81 \begin {gather*} -\frac {25}{x^{2} e^{\left (x^{4}\right )} + 5 \, x^{2} - 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 21, normalized size = 0.81 \begin {gather*} -\frac {25}{x^{2} e^{\left (x^{4}\right )} + 5 \, x^{2} - 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 19, normalized size = 0.73
method | result | size |
norman | \(-\frac {25}{x \left (x \,{\mathrm e}^{x^{4}}+5 x -4\right )}\) | \(19\) |
risch | \(-\frac {25}{x \left (x \,{\mathrm e}^{x^{4}}+5 x -4\right )}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 21, normalized size = 0.81 \begin {gather*} -\frac {25}{x^{2} e^{\left (x^{4}\right )} + 5 \, x^{2} - 4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.26, size = 28, normalized size = 1.08 \begin {gather*} \frac {25}{4\,x}-\frac {\frac {25\,{\mathrm {e}}^{x^4}}{4}+\frac {125}{4}}{x\,\left ({\mathrm {e}}^{x^4}+5\right )-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 19, normalized size = 0.73 \begin {gather*} - \frac {25}{x^{2} e^{x^{4}} + 5 x^{2} - 4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________