Optimal. Leaf size=29 \[ -2-\frac {-4+x}{x}+x-\log ^2\left (e^x-x-\log \left (\frac {1}{x}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.31, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x+x^3+e^x \left (4-x^2\right )+\left (-4+x^2\right ) \log \left (\frac {1}{x}\right )+\left (2 x-2 x^2+2 e^x x^2\right ) \log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{-e^x x^2+x^3+x^2 \log \left (\frac {1}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 \left (1-x+x^2+x \log \left (\frac {1}{x}\right )\right ) \log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{x \left (-e^x+x+\log \left (\frac {1}{x}\right )\right )}+\frac {-4+x^2-2 x^2 \log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{x^2}\right ) \, dx\\ &=2 \int \frac {\left (1-x+x^2+x \log \left (\frac {1}{x}\right )\right ) \log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{x \left (-e^x+x+\log \left (\frac {1}{x}\right )\right )} \, dx+\int \frac {-4+x^2-2 x^2 \log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{x^2} \, dx\\ &=2 \int \left (\frac {\log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{e^x-x-\log \left (\frac {1}{x}\right )}+\frac {\log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{x \left (-e^x+x+\log \left (\frac {1}{x}\right )\right )}+\frac {x \log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{-e^x+x+\log \left (\frac {1}{x}\right )}+\frac {\log \left (\frac {1}{x}\right ) \log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{-e^x+x+\log \left (\frac {1}{x}\right )}\right ) \, dx+\int \left (\frac {-4+x^2}{x^2}-2 \log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )\right ) \, dx\\ &=-\left (2 \int \log \left (e^x-x-\log \left (\frac {1}{x}\right )\right ) \, dx\right )+2 \int \frac {\log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{e^x-x-\log \left (\frac {1}{x}\right )} \, dx+2 \int \frac {\log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{x \left (-e^x+x+\log \left (\frac {1}{x}\right )\right )} \, dx+2 \int \frac {x \log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{-e^x+x+\log \left (\frac {1}{x}\right )} \, dx+2 \int \frac {\log \left (\frac {1}{x}\right ) \log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{-e^x+x+\log \left (\frac {1}{x}\right )} \, dx+\int \frac {-4+x^2}{x^2} \, dx\\ &=-\left (2 \int \log \left (e^x-x-\log \left (\frac {1}{x}\right )\right ) \, dx\right )+2 \int \frac {\log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{e^x-x-\log \left (\frac {1}{x}\right )} \, dx+2 \int \frac {\log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{x \left (-e^x+x+\log \left (\frac {1}{x}\right )\right )} \, dx+2 \int \frac {x \log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{-e^x+x+\log \left (\frac {1}{x}\right )} \, dx+2 \int \frac {\log \left (\frac {1}{x}\right ) \log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{-e^x+x+\log \left (\frac {1}{x}\right )} \, dx+\int \left (1-\frac {4}{x^2}\right ) \, dx\\ &=\frac {4}{x}+x-2 \int \log \left (e^x-x-\log \left (\frac {1}{x}\right )\right ) \, dx+2 \int \frac {\log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{e^x-x-\log \left (\frac {1}{x}\right )} \, dx+2 \int \frac {\log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{x \left (-e^x+x+\log \left (\frac {1}{x}\right )\right )} \, dx+2 \int \frac {x \log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{-e^x+x+\log \left (\frac {1}{x}\right )} \, dx+2 \int \frac {\log \left (\frac {1}{x}\right ) \log \left (e^x-x-\log \left (\frac {1}{x}\right )\right )}{-e^x+x+\log \left (\frac {1}{x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 25, normalized size = 0.86 \begin {gather*} \frac {4}{x}+x-\log ^2\left (e^x-x-\log \left (\frac {1}{x}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 29, normalized size = 1.00 \begin {gather*} -\frac {x \log \left (-x + e^{x} - \log \left (\frac {1}{x}\right )\right )^{2} - x^{2} - 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 25, normalized size = 0.86 \begin {gather*} -\frac {x \log \left (-x + e^{x} + \log \relax (x)\right )^{2} - x^{2} - 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 24, normalized size = 0.83
method | result | size |
risch | \(-\ln \left (\ln \relax (x )+{\mathrm e}^{x}-x \right )^{2}+\frac {x^{2}+4}{x}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 25, normalized size = 0.86 \begin {gather*} -\frac {x \log \left (-x + e^{x} + \log \relax (x)\right )^{2} - x^{2} - 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.34, size = 24, normalized size = 0.83 \begin {gather*} x-{\ln \left ({\mathrm {e}}^x-\ln \left (\frac {1}{x}\right )-x\right )}^2+\frac {4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.71, size = 17, normalized size = 0.59 \begin {gather*} x - \log {\left (- x + e^{x} - \log {\left (\frac {1}{x} \right )} \right )}^{2} + \frac {4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________