Optimal. Leaf size=30 \[ \frac {e^{16} \log \left (x^2\right )}{-x+\left (3+x^2\right ) \left (\frac {1}{3} (-2+x)+\log (x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 7.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{16} \left (-36-12 x^2+6 x^3\right )+e^{16} \left (54+18 x^2\right ) \log (x)+\left (e^{16} \left (-27+3 x^2-9 x^3\right )-18 e^{16} x^2 \log (x)\right ) \log \left (x^2\right )}{36 x+24 x^3-12 x^4+4 x^5-4 x^6+x^7+\left (-108 x-72 x^3+18 x^4-12 x^5+6 x^6\right ) \log (x)+\left (81 x+54 x^3+9 x^5\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 e^{16} \left (-12-4 x^2+2 x^3-\left (9-x^2+3 x^3\right ) \log \left (x^2\right )-6 \log (x) \left (-3-x^2+x^2 \log \left (x^2\right )\right )\right )}{x \left (6+2 x^2-x^3-3 \left (3+x^2\right ) \log (x)\right )^2} \, dx\\ &=\left (3 e^{16}\right ) \int \frac {-12-4 x^2+2 x^3-\left (9-x^2+3 x^3\right ) \log \left (x^2\right )-6 \log (x) \left (-3-x^2+x^2 \log \left (x^2\right )\right )}{x \left (6+2 x^2-x^3-3 \left (3+x^2\right ) \log (x)\right )^2} \, dx\\ &=\left (3 e^{16}\right ) \int \left (-\frac {12}{x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2}-\frac {4 x}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2}+\frac {2 x^2}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2}+\frac {18 \log (x)}{x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2}+\frac {6 x \log (x)}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2}-\frac {\left (9-x^2+3 x^3+6 x^2 \log (x)\right ) \log \left (x^2\right )}{x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2}\right ) \, dx\\ &=-\left (\left (3 e^{16}\right ) \int \frac {\left (9-x^2+3 x^3+6 x^2 \log (x)\right ) \log \left (x^2\right )}{x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx\right )+\left (6 e^{16}\right ) \int \frac {x^2}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx-\left (12 e^{16}\right ) \int \frac {x}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx+\left (18 e^{16}\right ) \int \frac {x \log (x)}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx-\left (36 e^{16}\right ) \int \frac {1}{x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx+\left (54 e^{16}\right ) \int \frac {\log (x)}{x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx\\ &=-\left (\left (3 e^{16}\right ) \int \left (\frac {9 \log \left (x^2\right )}{x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2}-\frac {x \log \left (x^2\right )}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2}+\frac {3 x^2 \log \left (x^2\right )}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2}+\frac {6 x \log (x) \log \left (x^2\right )}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2}\right ) \, dx\right )+\left (6 e^{16}\right ) \int \frac {x^2}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx-\left (12 e^{16}\right ) \int \frac {x}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx+\left (18 e^{16}\right ) \int \left (\frac {x \left (6+2 x^2-x^3\right )}{3 \left (3+x^2\right ) \left (6+2 x^2-x^3-9 \log (x)-3 x^2 \log (x)\right )^2}+\frac {x}{3 \left (3+x^2\right ) \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )}\right ) \, dx-\left (36 e^{16}\right ) \int \frac {1}{x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx+\left (54 e^{16}\right ) \int \left (\frac {6+2 x^2-x^3}{3 x \left (3+x^2\right ) \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2}+\frac {1}{3 x \left (3+x^2\right ) \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )}\right ) \, dx\\ &=\left (3 e^{16}\right ) \int \frac {x \log \left (x^2\right )}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx+\left (6 e^{16}\right ) \int \frac {x \left (6+2 x^2-x^3\right )}{\left (3+x^2\right ) \left (6+2 x^2-x^3-9 \log (x)-3 x^2 \log (x)\right )^2} \, dx+\left (6 e^{16}\right ) \int \frac {x^2}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx+\left (6 e^{16}\right ) \int \frac {x}{\left (3+x^2\right ) \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )} \, dx-\left (9 e^{16}\right ) \int \frac {x^2 \log \left (x^2\right )}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx-\left (12 e^{16}\right ) \int \frac {x}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx+\left (18 e^{16}\right ) \int \frac {6+2 x^2-x^3}{x \left (3+x^2\right ) \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx+\left (18 e^{16}\right ) \int \frac {1}{x \left (3+x^2\right ) \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )} \, dx-\left (18 e^{16}\right ) \int \frac {x \log (x) \log \left (x^2\right )}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx-\left (27 e^{16}\right ) \int \frac {\log \left (x^2\right )}{x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx-\left (36 e^{16}\right ) \int \frac {1}{x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx\\ &=\left (3 e^{16}\right ) \int \frac {x \log \left (x^2\right )}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx+\left (6 e^{16}\right ) \int \frac {x^2}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx+\left (6 e^{16}\right ) \int \left (\frac {3}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2}+\frac {2 x}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2}-\frac {x^2}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2}-\frac {9}{\left (3+x^2\right ) \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2}\right ) \, dx+\left (6 e^{16}\right ) \int \left (-\frac {1}{2 \left (i \sqrt {3}-x\right ) \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )}+\frac {1}{2 \left (i \sqrt {3}+x\right ) \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )}\right ) \, dx-\left (9 e^{16}\right ) \int \frac {x^2 \log \left (x^2\right )}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx-\left (12 e^{16}\right ) \int \frac {x}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx+\left (18 e^{16}\right ) \int \left (-\frac {1}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2}+\frac {2}{x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2}+\frac {3}{\left (3+x^2\right ) \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2}\right ) \, dx+\left (18 e^{16}\right ) \int \left (\frac {1}{3 x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )}-\frac {x}{3 \left (3+x^2\right ) \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )}\right ) \, dx-\left (18 e^{16}\right ) \int \frac {x \log (x) \log \left (x^2\right )}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx-\left (27 e^{16}\right ) \int \frac {\log \left (x^2\right )}{x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx-\left (36 e^{16}\right ) \int \frac {1}{x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx\\ &=-\left (\left (3 e^{16}\right ) \int \frac {1}{\left (i \sqrt {3}-x\right ) \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )} \, dx\right )+\left (3 e^{16}\right ) \int \frac {1}{\left (i \sqrt {3}+x\right ) \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )} \, dx+\left (3 e^{16}\right ) \int \frac {x \log \left (x^2\right )}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx+\left (6 e^{16}\right ) \int \frac {1}{x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )} \, dx-\left (6 e^{16}\right ) \int \frac {x}{\left (3+x^2\right ) \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )} \, dx-\left (9 e^{16}\right ) \int \frac {x^2 \log \left (x^2\right )}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx-\left (18 e^{16}\right ) \int \frac {x \log (x) \log \left (x^2\right )}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx-\left (27 e^{16}\right ) \int \frac {\log \left (x^2\right )}{x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx\\ &=-\left (\left (3 e^{16}\right ) \int \frac {1}{\left (i \sqrt {3}-x\right ) \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )} \, dx\right )+\left (3 e^{16}\right ) \int \frac {1}{\left (i \sqrt {3}+x\right ) \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )} \, dx+\left (3 e^{16}\right ) \int \frac {x \log \left (x^2\right )}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx+\left (6 e^{16}\right ) \int \frac {1}{x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )} \, dx-\left (6 e^{16}\right ) \int \left (-\frac {1}{2 \left (i \sqrt {3}-x\right ) \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )}+\frac {1}{2 \left (i \sqrt {3}+x\right ) \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )}\right ) \, dx-\left (9 e^{16}\right ) \int \frac {x^2 \log \left (x^2\right )}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx-\left (18 e^{16}\right ) \int \frac {x \log (x) \log \left (x^2\right )}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx-\left (27 e^{16}\right ) \int \frac {\log \left (x^2\right )}{x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx\\ &=\left (3 e^{16}\right ) \int \frac {x \log \left (x^2\right )}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx+\left (6 e^{16}\right ) \int \frac {1}{x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )} \, dx-\left (9 e^{16}\right ) \int \frac {x^2 \log \left (x^2\right )}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx-\left (18 e^{16}\right ) \int \frac {x \log (x) \log \left (x^2\right )}{\left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx-\left (27 e^{16}\right ) \int \frac {\log \left (x^2\right )}{x \left (-6-2 x^2+x^3+9 \log (x)+3 x^2 \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.76, size = 30, normalized size = 1.00 \begin {gather*} \frac {3 e^{16} \log \left (x^2\right )}{-6-2 x^2+x^3+3 \left (3+x^2\right ) \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 27, normalized size = 0.90 \begin {gather*} \frac {6 \, e^{16} \log \relax (x)}{x^{3} - 2 \, x^{2} + 3 \, {\left (x^{2} + 3\right )} \log \relax (x) - 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 29, normalized size = 0.97 \begin {gather*} \frac {6 \, e^{16} \log \relax (x)}{x^{3} + 3 \, x^{2} \log \relax (x) - 2 \, x^{2} + 9 \, \log \relax (x) - 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.13, size = 166, normalized size = 5.53
method | result | size |
risch | \(\frac {2 \,{\mathrm e}^{16}}{x^{2}+3}-\frac {\left (3 i \pi \,x^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-6 i \pi \,x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+3 i \pi \,x^{2} \mathrm {csgn}\left (i x^{2}\right )^{3}+9 i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}-18 i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )+9 i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 x^{3}-8 x^{2}-24\right ) {\mathrm e}^{16}}{2 \left (x^{2}+3\right ) \left (3 x^{2} \ln \relax (x )+x^{3}-2 x^{2}+9 \ln \relax (x )-6\right )}\) | \(166\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 27, normalized size = 0.90 \begin {gather*} \frac {6 \, e^{16} \log \relax (x)}{x^{3} - 2 \, x^{2} + 3 \, {\left (x^{2} + 3\right )} \log \relax (x) - 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {\ln \left (x^2\right )\,\left ({\mathrm {e}}^{16}\,\left (9\,x^3-3\,x^2+27\right )+18\,x^2\,{\mathrm {e}}^{16}\,\ln \relax (x)\right )+{\mathrm {e}}^{16}\,\left (-6\,x^3+12\,x^2+36\right )-{\mathrm {e}}^{16}\,\ln \relax (x)\,\left (18\,x^2+54\right )}{36\,x+{\ln \relax (x)}^2\,\left (9\,x^5+54\,x^3+81\,x\right )-\ln \relax (x)\,\left (-6\,x^6+12\,x^5-18\,x^4+72\,x^3+108\,x\right )+24\,x^3-12\,x^4+4\,x^5-4\,x^6+x^7} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.50, size = 68, normalized size = 2.27 \begin {gather*} \frac {- 2 x^{3} e^{16} + 4 x^{2} e^{16} + 12 e^{16}}{x^{5} - 2 x^{4} + 3 x^{3} - 12 x^{2} + \left (3 x^{4} + 18 x^{2} + 27\right ) \log {\relax (x )} - 18} + \frac {4 e^{16}}{2 x^{2} + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________