Optimal. Leaf size=21 \[ e^{\frac {\left (2-\frac {15 x}{13}\right ) x}{2-x}}+\log (5) \]
________________________________________________________________________________________
Rubi [A] time = 0.37, antiderivative size = 19, normalized size of antiderivative = 0.90, number of steps used = 4, number of rules used = 4, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {27, 12, 6741, 6706} \begin {gather*} e^{\frac {(26-15 x) x}{13 (2-x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 6706
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {-26 x+15 x^2}{-26+13 x}} \left (52-60 x+15 x^2\right )}{13 (-2+x)^2} \, dx\\ &=\frac {1}{13} \int \frac {e^{\frac {-26 x+15 x^2}{-26+13 x}} \left (52-60 x+15 x^2\right )}{(-2+x)^2} \, dx\\ &=\frac {1}{13} \int \frac {e^{\frac {x (-26+15 x)}{-26+13 x}} \left (52-60 x+15 x^2\right )}{(2-x)^2} \, dx\\ &=e^{\frac {(26-15 x) x}{13 (2-x)}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 17, normalized size = 0.81 \begin {gather*} e^{\frac {x (-26+15 x)}{13 (-2+x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 17, normalized size = 0.81 \begin {gather*} e^{\left (\frac {15 \, x^{2} - 26 \, x}{13 \, {\left (x - 2\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 20, normalized size = 0.95 \begin {gather*} e^{\left (\frac {15 \, x^{2}}{13 \, {\left (x - 2\right )}} - \frac {2 \, x}{x - 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.38, size = 15, normalized size = 0.71
method | result | size |
gosper | \({\mathrm e}^{\frac {x \left (15 x -26\right )}{13 x -26}}\) | \(15\) |
risch | \({\mathrm e}^{\frac {x \left (15 x -26\right )}{13 x -26}}\) | \(15\) |
norman | \(\frac {x \,{\mathrm e}^{\frac {15 x^{2}-26 x}{13 x -26}}-2 \,{\mathrm e}^{\frac {15 x^{2}-26 x}{13 x -26}}}{x -2}\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.53, size = 13, normalized size = 0.62 \begin {gather*} e^{\left (\frac {15}{13} \, x + \frac {8}{13 \, {\left (x - 2\right )}} + \frac {4}{13}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.22, size = 23, normalized size = 1.10 \begin {gather*} {\mathrm {e}}^{\frac {15\,x^2}{13\,x-26}}\,{\mathrm {e}}^{-\frac {2\,x}{x-2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 14, normalized size = 0.67 \begin {gather*} e^{\frac {15 x^{2} - 26 x}{13 x - 26}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________