Optimal. Leaf size=19 \[ \frac {\left (\frac {e^x}{x}+\frac {5 x}{2}\right )^2}{x^3} \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 25, normalized size of antiderivative = 1.32, number of steps used = 5, number of rules used = 3, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {12, 14, 2197} \begin {gather*} \frac {e^{2 x}}{x^5}+\frac {5 e^x}{x^3}+\frac {25}{4 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {-25 x^4+e^{2 x} (-20+8 x)+e^x \left (-60 x^2+20 x^3\right )}{x^6} \, dx\\ &=\frac {1}{4} \int \left (\frac {20 e^x (-3+x)}{x^4}-\frac {25}{x^2}+\frac {4 e^{2 x} (-5+2 x)}{x^6}\right ) \, dx\\ &=\frac {25}{4 x}+5 \int \frac {e^x (-3+x)}{x^4} \, dx+\int \frac {e^{2 x} (-5+2 x)}{x^6} \, dx\\ &=\frac {e^{2 x}}{x^5}+\frac {5 e^x}{x^3}+\frac {25}{4 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 25, normalized size = 1.32 \begin {gather*} \frac {e^{2 x}}{x^5}+\frac {5 e^x}{x^3}+\frac {25}{4 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 24, normalized size = 1.26 \begin {gather*} \frac {25 \, x^{4} + 20 \, x^{2} e^{x} + 4 \, e^{\left (2 \, x\right )}}{4 \, x^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 24, normalized size = 1.26 \begin {gather*} \frac {25 \, x^{4} + 20 \, x^{2} e^{x} + 4 \, e^{\left (2 \, x\right )}}{4 \, x^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 22, normalized size = 1.16
method | result | size |
default | \(\frac {25}{4 x}+\frac {5 \,{\mathrm e}^{x}}{x^{3}}+\frac {{\mathrm e}^{2 x}}{x^{5}}\) | \(22\) |
norman | \(\frac {{\mathrm e}^{2 x}+\frac {25 x^{4}}{4}+5 \,{\mathrm e}^{x} x^{2}}{x^{5}}\) | \(22\) |
risch | \(\frac {25}{4 x}+\frac {5 \,{\mathrm e}^{x}}{x^{3}}+\frac {{\mathrm e}^{2 x}}{x^{5}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.45, size = 34, normalized size = 1.79 \begin {gather*} \frac {25}{4 \, x} - 5 \, \Gamma \left (-2, -x\right ) - 15 \, \Gamma \left (-3, -x\right ) - 32 \, \Gamma \left (-4, -2 \, x\right ) - 160 \, \Gamma \left (-5, -2 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.14, size = 21, normalized size = 1.11 \begin {gather*} \frac {{\mathrm {e}}^{2\,x}+5\,x^2\,{\mathrm {e}}^x+\frac {25\,x^4}{4}}{x^5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 24, normalized size = 1.26 \begin {gather*} \frac {25}{4 x} + \frac {5 x^{5} e^{x} + x^{3} e^{2 x}}{x^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________