Optimal. Leaf size=18 \[ -e+\frac {10 e^{-x} \log (x)}{(4+x)^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.81, antiderivative size = 14, normalized size of antiderivative = 0.78, number of steps used = 17, number of rules used = 7, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {6688, 12, 6742, 2178, 2177, 2197, 2554} \begin {gather*} \frac {10 e^{-x} \log (x)}{(x+4)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2177
Rule 2178
Rule 2197
Rule 2554
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 e^{-x} (4+x-x (6+x) \log (x))}{x (4+x)^3} \, dx\\ &=10 \int \frac {e^{-x} (4+x-x (6+x) \log (x))}{x (4+x)^3} \, dx\\ &=10 \int \left (\frac {e^{-x}}{x (4+x)^2}-\frac {e^{-x} (6+x) \log (x)}{(4+x)^3}\right ) \, dx\\ &=10 \int \frac {e^{-x}}{x (4+x)^2} \, dx-10 \int \frac {e^{-x} (6+x) \log (x)}{(4+x)^3} \, dx\\ &=\frac {10 e^{-x} \log (x)}{(4+x)^2}-10 \int \frac {e^{-x}}{x (4+x)^2} \, dx+10 \int \left (\frac {e^{-x}}{16 x}-\frac {e^{-x}}{4 (4+x)^2}-\frac {e^{-x}}{16 (4+x)}\right ) \, dx\\ &=\frac {10 e^{-x} \log (x)}{(4+x)^2}+\frac {5}{8} \int \frac {e^{-x}}{x} \, dx-\frac {5}{8} \int \frac {e^{-x}}{4+x} \, dx-\frac {5}{2} \int \frac {e^{-x}}{(4+x)^2} \, dx-10 \int \left (\frac {e^{-x}}{16 x}-\frac {e^{-x}}{4 (4+x)^2}-\frac {e^{-x}}{16 (4+x)}\right ) \, dx\\ &=\frac {5 e^{-x}}{2 (4+x)}-\frac {5}{8} e^4 \text {Ei}(-4-x)+\frac {5 \text {Ei}(-x)}{8}+\frac {10 e^{-x} \log (x)}{(4+x)^2}-\frac {5}{8} \int \frac {e^{-x}}{x} \, dx+\frac {5}{8} \int \frac {e^{-x}}{4+x} \, dx+\frac {5}{2} \int \frac {e^{-x}}{(4+x)^2} \, dx+\frac {5}{2} \int \frac {e^{-x}}{4+x} \, dx\\ &=\frac {5}{2} e^4 \text {Ei}(-4-x)+\frac {10 e^{-x} \log (x)}{(4+x)^2}-\frac {5}{2} \int \frac {e^{-x}}{4+x} \, dx\\ &=\frac {10 e^{-x} \log (x)}{(4+x)^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 14, normalized size = 0.78 \begin {gather*} \frac {10 e^{-x} \log (x)}{(4+x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.84, size = 18, normalized size = 1.00 \begin {gather*} \frac {10 \, e^{\left (-x\right )} \log \relax (x)}{x^{2} + 8 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 18, normalized size = 1.00 \begin {gather*} \frac {10 \, e^{\left (-x\right )} \log \relax (x)}{x^{2} + 8 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 14, normalized size = 0.78
method | result | size |
norman | \(\frac {10 \ln \relax (x ) {\mathrm e}^{-x}}{\left (4+x \right )^{2}}\) | \(14\) |
risch | \(\frac {10 \ln \relax (x ) {\mathrm e}^{-x}}{\left (4+x \right )^{2}}\) | \(14\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 18, normalized size = 1.00 \begin {gather*} \frac {10 \, e^{\left (-x\right )} \log \relax (x)}{x^{2} + 8 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.42, size = 13, normalized size = 0.72 \begin {gather*} \frac {10\,{\mathrm {e}}^{-x}\,\ln \relax (x)}{{\left (x+4\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 15, normalized size = 0.83 \begin {gather*} \frac {10 e^{- x} \log {\relax (x )}}{x^{2} + 8 x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________