Optimal. Leaf size=34 \[ \frac {5+3 x^2+\frac {\log (4)}{\left (e^x (1-2 x)+\frac {4}{x}-x\right )^2}}{x} \]
________________________________________________________________________________________
Rubi [F] time = 3.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {320-432 x^2+204 x^4-41 x^6+3 x^8+e^{3 x} \left (5 x^3-30 x^4+57 x^5-22 x^6-36 x^7+24 x^8\right )+e^{2 x} \left (60 x^2-240 x^3+189 x^4+204 x^5-195 x^6-36 x^7+36 x^8\right )+\left (-4 x^2-3 x^4\right ) \log (4)+e^x \left (240 x-480 x^2-264 x^3+528 x^4+87 x^5-174 x^6-9 x^7+18 x^8+\left (x^3-4 x^4-4 x^5\right ) \log (4)\right )}{-64 x^2+48 x^4-12 x^6+x^8+e^x \left (-48 x^3+96 x^4+24 x^5-48 x^6-3 x^7+6 x^8\right )+e^{3 x} \left (-x^5+6 x^6-12 x^7+8 x^8\right )+e^{2 x} \left (-12 x^4+48 x^5-45 x^6-12 x^7+12 x^8\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-320+41 x^6-3 x^8-e^{3 x} x^3 (-1+2 x)^3 \left (-5+3 x^2\right )-3 e^{2 x} (1-2 x)^2 x^2 \left (20-17 x^2+3 x^4\right )-e^x x \left (240-480 x-174 x^5-9 x^6+18 x^7+x^4 (87-4 \log (4))+x^2 (-264+\log (4))-4 x^3 (-132+\log (4))\right )+3 x^4 (-68+\log (4))+4 x^2 (108+\log (4))}{x^2 \left (4-x^2-e^x x (-1+2 x)\right )^3} \, dx\\ &=\int \left (\frac {-5+3 x^2}{x^2}-\frac {\left (-1+4 x+4 x^2\right ) \log (4)}{(-1+2 x) \left (-4-e^x x+x^2+2 e^x x^2\right )^2}+\frac {2 \left (4-12 x-7 x^2-x^3+2 x^4\right ) \log (4)}{(-1+2 x) \left (-4-e^x x+x^2+2 e^x x^2\right )^3}\right ) \, dx\\ &=-\left (\log (4) \int \frac {-1+4 x+4 x^2}{(-1+2 x) \left (-4-e^x x+x^2+2 e^x x^2\right )^2} \, dx\right )+(2 \log (4)) \int \frac {4-12 x-7 x^2-x^3+2 x^4}{(-1+2 x) \left (-4-e^x x+x^2+2 e^x x^2\right )^3} \, dx+\int \frac {-5+3 x^2}{x^2} \, dx\\ &=-\left (\log (4) \int \left (\frac {3}{\left (-4-e^x x+x^2+2 e^x x^2\right )^2}+\frac {2 x}{\left (-4-e^x x+x^2+2 e^x x^2\right )^2}+\frac {2}{(-1+2 x) \left (-4-e^x x+x^2+2 e^x x^2\right )^2}\right ) \, dx\right )+(2 \log (4)) \int \left (-\frac {31}{4 \left (-4-e^x x+x^2+2 e^x x^2\right )^3}-\frac {7 x}{2 \left (-4-e^x x+x^2+2 e^x x^2\right )^3}+\frac {x^3}{\left (-4-e^x x+x^2+2 e^x x^2\right )^3}-\frac {15}{4 (-1+2 x) \left (-4-e^x x+x^2+2 e^x x^2\right )^3}\right ) \, dx+\int \left (3-\frac {5}{x^2}\right ) \, dx\\ &=\frac {5}{x}+3 x+(2 \log (4)) \int \frac {x^3}{\left (-4-e^x x+x^2+2 e^x x^2\right )^3} \, dx-(2 \log (4)) \int \frac {x}{\left (-4-e^x x+x^2+2 e^x x^2\right )^2} \, dx-(2 \log (4)) \int \frac {1}{(-1+2 x) \left (-4-e^x x+x^2+2 e^x x^2\right )^2} \, dx-(3 \log (4)) \int \frac {1}{\left (-4-e^x x+x^2+2 e^x x^2\right )^2} \, dx-(7 \log (4)) \int \frac {x}{\left (-4-e^x x+x^2+2 e^x x^2\right )^3} \, dx-\frac {1}{2} (15 \log (4)) \int \frac {1}{(-1+2 x) \left (-4-e^x x+x^2+2 e^x x^2\right )^3} \, dx-\frac {1}{2} (31 \log (4)) \int \frac {1}{\left (-4-e^x x+x^2+2 e^x x^2\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 30, normalized size = 0.88 \begin {gather*} \frac {5}{x}+x \left (3+\frac {\log (4)}{\left (-4+x^2+e^x x (-1+2 x)\right )^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.98, size = 147, normalized size = 4.32 \begin {gather*} \frac {3 \, x^{6} - 19 \, x^{4} + 2 \, x^{2} \log \relax (2) + 8 \, x^{2} + {\left (12 \, x^{6} - 12 \, x^{5} + 23 \, x^{4} - 20 \, x^{3} + 5 \, x^{2}\right )} e^{\left (2 \, x\right )} + 2 \, {\left (6 \, x^{6} - 3 \, x^{5} - 14 \, x^{4} + 7 \, x^{3} - 40 \, x^{2} + 20 \, x\right )} e^{x} + 80}{x^{5} - 8 \, x^{3} + {\left (4 \, x^{5} - 4 \, x^{4} + x^{3}\right )} e^{\left (2 \, x\right )} + 2 \, {\left (2 \, x^{5} - x^{4} - 8 \, x^{3} + 4 \, x^{2}\right )} e^{x} + 16 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.40, size = 178, normalized size = 5.24 \begin {gather*} \frac {12 \, x^{6} e^{\left (2 \, x\right )} + 12 \, x^{6} e^{x} + 3 \, x^{6} - 12 \, x^{5} e^{\left (2 \, x\right )} - 6 \, x^{5} e^{x} + 23 \, x^{4} e^{\left (2 \, x\right )} - 28 \, x^{4} e^{x} - 19 \, x^{4} - 20 \, x^{3} e^{\left (2 \, x\right )} + 14 \, x^{3} e^{x} + 5 \, x^{2} e^{\left (2 \, x\right )} - 80 \, x^{2} e^{x} + 2 \, x^{2} \log \relax (2) + 8 \, x^{2} + 40 \, x e^{x} + 80}{4 \, x^{5} e^{\left (2 \, x\right )} + 4 \, x^{5} e^{x} + x^{5} - 4 \, x^{4} e^{\left (2 \, x\right )} - 2 \, x^{4} e^{x} + x^{3} e^{\left (2 \, x\right )} - 16 \, x^{3} e^{x} - 8 \, x^{3} + 8 \, x^{2} e^{x} + 16 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 34, normalized size = 1.00
method | result | size |
risch | \(3 x +\frac {5}{x}+\frac {2 x \ln \relax (2)}{\left (2 \,{\mathrm e}^{x} x^{2}-{\mathrm e}^{x} x +x^{2}-4\right )^{2}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.08, size = 144, normalized size = 4.24 \begin {gather*} \frac {3 \, x^{6} - 19 \, x^{4} + 2 \, x^{2} {\left (\log \relax (2) + 4\right )} + {\left (12 \, x^{6} - 12 \, x^{5} + 23 \, x^{4} - 20 \, x^{3} + 5 \, x^{2}\right )} e^{\left (2 \, x\right )} + 2 \, {\left (6 \, x^{6} - 3 \, x^{5} - 14 \, x^{4} + 7 \, x^{3} - 40 \, x^{2} + 20 \, x\right )} e^{x} + 80}{x^{5} - 8 \, x^{3} + {\left (4 \, x^{5} - 4 \, x^{4} + x^{3}\right )} e^{\left (2 \, x\right )} + 2 \, {\left (2 \, x^{5} - x^{4} - 8 \, x^{3} + 4 \, x^{2}\right )} e^{x} + 16 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {{\mathrm {e}}^{3\,x}\,\left (24\,x^8-36\,x^7-22\,x^6+57\,x^5-30\,x^4+5\,x^3\right )+{\mathrm {e}}^{2\,x}\,\left (36\,x^8-36\,x^7-195\,x^6+204\,x^5+189\,x^4-240\,x^3+60\,x^2\right )-2\,\ln \relax (2)\,\left (3\,x^4+4\,x^2\right )-{\mathrm {e}}^x\,\left (2\,\ln \relax (2)\,\left (4\,x^5+4\,x^4-x^3\right )-240\,x+480\,x^2+264\,x^3-528\,x^4-87\,x^5+174\,x^6+9\,x^7-18\,x^8\right )-432\,x^2+204\,x^4-41\,x^6+3\,x^8+320}{{\mathrm {e}}^{2\,x}\,\left (-12\,x^8+12\,x^7+45\,x^6-48\,x^5+12\,x^4\right )+{\mathrm {e}}^{3\,x}\,\left (-8\,x^8+12\,x^7-6\,x^6+x^5\right )+64\,x^2-48\,x^4+12\,x^6-x^8+{\mathrm {e}}^x\,\left (-6\,x^8+3\,x^7+48\,x^6-24\,x^5-96\,x^4+48\,x^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.59, size = 63, normalized size = 1.85 \begin {gather*} 3 x + \frac {2 x \log {\relax (2 )}}{x^{4} - 8 x^{2} + \left (4 x^{4} - 4 x^{3} + x^{2}\right ) e^{2 x} + \left (4 x^{4} - 2 x^{3} - 16 x^{2} + 8 x\right ) e^{x} + 16} + \frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________