Optimal. Leaf size=26 \[ \log \left (9 \left (\frac {1}{4} (-1-x)+\frac {4}{x}+\log (x)\right )^2+\log (\log (x))\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.96, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {16 x^2+\left (-4608+1440 x-72 x^2-54 x^3+18 x^4\right ) \log (x)+\left (-1152 x+288 x^2-72 x^3\right ) \log ^2(x)}{\left (2304 x-288 x^2-279 x^3+18 x^4+9 x^5\right ) \log (x)+\left (1152 x^2-72 x^3-72 x^4\right ) \log ^2(x)+144 x^3 \log ^3(x)+16 x^3 \log (x) \log (\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {16 x^2+\left (-4608+1440 x-72 x^2-54 x^3+18 x^4\right ) \log (x)+\left (-1152 x+288 x^2-72 x^3\right ) \log ^2(x)}{x \log (x) \left (2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))\right )} \, dx\\ &=\int \left (\frac {1440}{2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))}-\frac {4608}{x \left (2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))\right )}-\frac {72 x}{2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))}-\frac {54 x^2}{2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))}+\frac {18 x^3}{2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))}+\frac {16 x}{\log (x) \left (2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))\right )}-\frac {1152 \log (x)}{2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))}+\frac {288 x \log (x)}{2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))}-\frac {72 x^2 \log (x)}{2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))}\right ) \, dx\\ &=16 \int \frac {x}{\log (x) \left (2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))\right )} \, dx+18 \int \frac {x^3}{2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))} \, dx-54 \int \frac {x^2}{2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))} \, dx-72 \int \frac {x}{2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))} \, dx-72 \int \frac {x^2 \log (x)}{2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))} \, dx+288 \int \frac {x \log (x)}{2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))} \, dx-1152 \int \frac {\log (x)}{2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))} \, dx+1440 \int \frac {1}{2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))} \, dx-4608 \int \frac {1}{x \left (2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))\right )} \, dx\\ &=16 \int \frac {x}{\log (x) \left (9 \left (-16+x+x^2\right )^2-72 x \left (-16+x+x^2\right ) \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))\right )} \, dx+18 \int \frac {x^3}{9 \left (-16+x+x^2\right )^2-72 x \left (-16+x+x^2\right ) \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))} \, dx-54 \int \frac {x^2}{9 \left (-16+x+x^2\right )^2-72 x \left (-16+x+x^2\right ) \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))} \, dx-72 \int \frac {x}{9 \left (-16+x+x^2\right )^2-72 x \left (-16+x+x^2\right ) \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))} \, dx-72 \int \frac {x^2 \log (x)}{9 \left (-16+x+x^2\right )^2-72 x \left (-16+x+x^2\right ) \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))} \, dx+288 \int \frac {x \log (x)}{9 \left (-16+x+x^2\right )^2-72 x \left (-16+x+x^2\right ) \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))} \, dx-1152 \int \frac {\log (x)}{9 \left (-16+x+x^2\right )^2-72 x \left (-16+x+x^2\right ) \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))} \, dx+1440 \int \frac {1}{9 \left (-16+x+x^2\right )^2-72 x \left (-16+x+x^2\right ) \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))} \, dx-4608 \int \frac {1}{x \left (9 \left (-16+x+x^2\right )^2-72 x \left (-16+x+x^2\right ) \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 68, normalized size = 2.62 \begin {gather*} 2 \left (-\log (x)+\frac {1}{2} \log \left (2304-288 x-279 x^2+18 x^3+9 x^4+1152 x \log (x)-72 x^2 \log (x)-72 x^3 \log (x)+144 x^2 \log ^2(x)+16 x^2 \log (\log (x))\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.82, size = 56, normalized size = 2.15 \begin {gather*} \log \left (\frac {9 \, x^{4} + 144 \, x^{2} \log \relax (x)^{2} + 18 \, x^{3} + 16 \, x^{2} \log \left (\log \relax (x)\right ) - 279 \, x^{2} - 72 \, {\left (x^{3} + x^{2} - 16 \, x\right )} \log \relax (x) - 288 \, x + 2304}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.27, size = 62, normalized size = 2.38 \begin {gather*} \log \left (9 \, x^{4} - 72 \, x^{3} \log \relax (x) + 144 \, x^{2} \log \relax (x)^{2} + 18 \, x^{3} - 72 \, x^{2} \log \relax (x) + 16 \, x^{2} \log \left (\log \relax (x)\right ) - 279 \, x^{2} + 1152 \, x \log \relax (x) - 288 \, x + 2304\right ) - 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 57, normalized size = 2.19
method | result | size |
risch | \(\ln \left (\ln \left (\ln \relax (x )\right )+\frac {\frac {9 x^{4}}{16}-\frac {9 x^{3} \ln \relax (x )}{2}+9 x^{2} \ln \relax (x )^{2}+\frac {9 x^{3}}{8}-\frac {9 x^{2} \ln \relax (x )}{2}-\frac {279 x^{2}}{16}+72 x \ln \relax (x )-18 x +144}{x^{2}}\right )\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.43, size = 57, normalized size = 2.19 \begin {gather*} \log \left (\frac {9 \, x^{4} + 144 \, x^{2} \log \relax (x)^{2} + 18 \, x^{3} + 16 \, x^{2} \log \left (\log \relax (x)\right ) - 279 \, x^{2} - 72 \, {\left (x^{3} + x^{2} - 16 \, x\right )} \log \relax (x) - 288 \, x + 2304}{16 \, x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {\ln \relax (x)\,\left (-18\,x^4+54\,x^3+72\,x^2-1440\,x+4608\right )+{\ln \relax (x)}^2\,\left (72\,x^3-288\,x^2+1152\,x\right )-16\,x^2}{\ln \relax (x)\,\left (9\,x^5+18\,x^4-279\,x^3-288\,x^2+2304\,x\right )+144\,x^3\,{\ln \relax (x)}^3-{\ln \relax (x)}^2\,\left (72\,x^4+72\,x^3-1152\,x^2\right )+16\,x^3\,\ln \left (\ln \relax (x)\right )\,\ln \relax (x)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.59, size = 65, normalized size = 2.50 \begin {gather*} \log {\left (\log {\left (\log {\relax (x )} \right )} + \frac {9 x^{4} - 72 x^{3} \log {\relax (x )} + 18 x^{3} + 144 x^{2} \log {\relax (x )}^{2} - 72 x^{2} \log {\relax (x )} - 279 x^{2} + 1152 x \log {\relax (x )} - 288 x + 2304}{16 x^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________