Optimal. Leaf size=24 \[ e^{3-e^{e^{-\frac {4}{\log (x)}} x+(256+x)^2}} \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 12.84, size = 26, normalized size = 1.08 \begin {gather*} e^{3-e^{65536+512 x+e^{-\frac {4}{\log (x)}} x+x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.05, size = 111, normalized size = 4.62 \begin {gather*} e^{\left (-{\left ({\left (x^{2} + 512 \, x + 65536\right )} e^{\frac {4}{\log \relax (x)}} + x\right )} e^{\left (-\frac {4}{\log \relax (x)}\right )} + \frac {{\left ({\left ({\left (x^{2} + 512 \, x + 65539\right )} \log \relax (x) - 4\right )} e^{\frac {4}{\log \relax (x)}} + x \log \relax (x) - e^{\left ({\left ({\left (x^{2} + 512 \, x + 65536\right )} e^{\frac {4}{\log \relax (x)}} + x\right )} e^{\left (-\frac {4}{\log \relax (x)}\right )} + \frac {4}{\log \relax (x)}\right )} \log \relax (x)\right )} e^{\left (-\frac {4}{\log \relax (x)}\right )}}{\log \relax (x)} + \frac {4}{\log \relax (x)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 24, normalized size = 1.00
method | result | size |
risch | \({\mathrm e}^{-{\mathrm e}^{x^{2}+512 x +65536+{\mathrm e}^{-\frac {4}{\ln \relax (x )}} x}+3}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.81, size = 23, normalized size = 0.96 \begin {gather*} e^{\left (-e^{\left (x^{2} + x e^{\left (-\frac {4}{\log \relax (x)}\right )} + 512 \, x + 65536\right )} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.54, size = 26, normalized size = 1.08 \begin {gather*} {\mathrm {e}}^3\,{\mathrm {e}}^{-{\mathrm {e}}^{512\,x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{x\,{\mathrm {e}}^{-\frac {4}{\ln \relax (x)}}}\,{\mathrm {e}}^{65536}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 16.86, size = 27, normalized size = 1.12 \begin {gather*} e^{3 - e^{\left (x + \left (x^{2} + 512 x + 65536\right ) e^{\frac {4}{\log {\relax (x )}}}\right ) e^{- \frac {4}{\log {\relax (x )}}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________