Optimal. Leaf size=32 \[ 4-e^{-\frac {2}{x^2}} \left (-1+\frac {3}{3+e^x}-\frac {4}{3 x}-x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.15, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {144+72 x^2+27 x^4+e^{2 x} \left (16+12 x+8 x^2+3 x^4\right )+e^x \left (96+36 x+48 x^2+27 x^4\right )}{27 e^{\frac {2}{x^2}} x^4+18 e^{\frac {2}{x^2}+x} x^4+3 e^{\frac {2}{x^2}+2 x} x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\frac {2}{x^2}} \left (144+72 x^2+27 x^4+e^{2 x} \left (16+12 x+8 x^2+3 x^4\right )+e^x \left (96+36 x+48 x^2+27 x^4\right )\right )}{3 \left (3+e^x\right )^2 x^4} \, dx\\ &=\frac {1}{3} \int \frac {e^{-\frac {2}{x^2}} \left (144+72 x^2+27 x^4+e^{2 x} \left (16+12 x+8 x^2+3 x^4\right )+e^x \left (96+36 x+48 x^2+27 x^4\right )\right )}{\left (3+e^x\right )^2 x^4} \, dx\\ &=\frac {1}{3} \int \left (-\frac {27 e^{-\frac {2}{x^2}}}{\left (3+e^x\right )^2}+\frac {9 e^{-\frac {2}{x^2}} \left (-4+x^3\right )}{\left (3+e^x\right ) x^3}+\frac {e^{-\frac {2}{x^2}} \left (16+12 x+8 x^2+3 x^4\right )}{x^4}\right ) \, dx\\ &=\frac {1}{3} \int \frac {e^{-\frac {2}{x^2}} \left (16+12 x+8 x^2+3 x^4\right )}{x^4} \, dx+3 \int \frac {e^{-\frac {2}{x^2}} \left (-4+x^3\right )}{\left (3+e^x\right ) x^3} \, dx-9 \int \frac {e^{-\frac {2}{x^2}}}{\left (3+e^x\right )^2} \, dx\\ &=\frac {1}{3} \int \left (3 e^{-\frac {2}{x^2}}+\frac {16 e^{-\frac {2}{x^2}}}{x^4}+\frac {12 e^{-\frac {2}{x^2}}}{x^3}+\frac {8 e^{-\frac {2}{x^2}}}{x^2}\right ) \, dx+3 \int \left (\frac {e^{-\frac {2}{x^2}}}{3+e^x}-\frac {4 e^{-\frac {2}{x^2}}}{\left (3+e^x\right ) x^3}\right ) \, dx-9 \int \frac {e^{-\frac {2}{x^2}}}{\left (3+e^x\right )^2} \, dx\\ &=\frac {8}{3} \int \frac {e^{-\frac {2}{x^2}}}{x^2} \, dx+3 \int \frac {e^{-\frac {2}{x^2}}}{3+e^x} \, dx+4 \int \frac {e^{-\frac {2}{x^2}}}{x^3} \, dx+\frac {16}{3} \int \frac {e^{-\frac {2}{x^2}}}{x^4} \, dx-9 \int \frac {e^{-\frac {2}{x^2}}}{\left (3+e^x\right )^2} \, dx-12 \int \frac {e^{-\frac {2}{x^2}}}{\left (3+e^x\right ) x^3} \, dx+\int e^{-\frac {2}{x^2}} \, dx\\ &=e^{-\frac {2}{x^2}}+\frac {4 e^{-\frac {2}{x^2}}}{3 x}+e^{-\frac {2}{x^2}} x+\frac {4}{3} \int \frac {e^{-\frac {2}{x^2}}}{x^2} \, dx-\frac {8}{3} \operatorname {Subst}\left (\int e^{-2 x^2} \, dx,x,\frac {1}{x}\right )+3 \int \frac {e^{-\frac {2}{x^2}}}{3+e^x} \, dx-4 \int \frac {e^{-\frac {2}{x^2}}}{x^2} \, dx-9 \int \frac {e^{-\frac {2}{x^2}}}{\left (3+e^x\right )^2} \, dx-12 \int \frac {e^{-\frac {2}{x^2}}}{\left (3+e^x\right ) x^3} \, dx\\ &=e^{-\frac {2}{x^2}}+\frac {4 e^{-\frac {2}{x^2}}}{3 x}+e^{-\frac {2}{x^2}} x-\frac {2}{3} \sqrt {2 \pi } \text {erf}\left (\frac {\sqrt {2}}{x}\right )-\frac {4}{3} \operatorname {Subst}\left (\int e^{-2 x^2} \, dx,x,\frac {1}{x}\right )+3 \int \frac {e^{-\frac {2}{x^2}}}{3+e^x} \, dx+4 \operatorname {Subst}\left (\int e^{-2 x^2} \, dx,x,\frac {1}{x}\right )-9 \int \frac {e^{-\frac {2}{x^2}}}{\left (3+e^x\right )^2} \, dx-12 \int \frac {e^{-\frac {2}{x^2}}}{\left (3+e^x\right ) x^3} \, dx\\ &=e^{-\frac {2}{x^2}}+\frac {4 e^{-\frac {2}{x^2}}}{3 x}+e^{-\frac {2}{x^2}} x+3 \int \frac {e^{-\frac {2}{x^2}}}{3+e^x} \, dx-9 \int \frac {e^{-\frac {2}{x^2}}}{\left (3+e^x\right )^2} \, dx-12 \int \frac {e^{-\frac {2}{x^2}}}{\left (3+e^x\right ) x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 30, normalized size = 0.94 \begin {gather*} \frac {1}{3} e^{-\frac {2}{x^2}} \left (3-\frac {9}{3+e^x}+\frac {4}{x}+3 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.89, size = 96, normalized size = 3.00 \begin {gather*} \frac {3 \, {\left (3 \, x^{2} + 4\right )} e^{\left (\frac {x^{3} + 2}{x^{2}} + \frac {2 \, {\left (x^{3} + 1\right )}}{x^{2}}\right )} + {\left (3 \, x^{2} + 3 \, x + 4\right )} e^{\left (\frac {4 \, {\left (x^{3} + 1\right )}}{x^{2}}\right )}}{3 \, {\left (3 \, x e^{\left (\frac {3 \, {\left (x^{3} + 2\right )}}{x^{2}}\right )} + x e^{\left (\frac {2 \, {\left (x^{3} + 2\right )}}{x^{2}} + \frac {2 \, {\left (x^{3} + 1\right )}}{x^{2}}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.44, size = 92, normalized size = 2.88 \begin {gather*} \frac {3 \, x^{2} e^{\left (\frac {x^{3} + 2}{x^{2}}\right )} + 9 \, x^{2} e^{\left (\frac {2}{x^{2}}\right )} + 3 \, x e^{\left (\frac {x^{3} + 2}{x^{2}}\right )} + 4 \, e^{\left (\frac {x^{3} + 2}{x^{2}}\right )} + 12 \, e^{\left (\frac {2}{x^{2}}\right )}}{3 \, {\left (x e^{\left (\frac {x^{3} + 2}{x^{2}} + \frac {2}{x^{2}}\right )} + 3 \, x e^{\left (\frac {4}{x^{2}}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 41, normalized size = 1.28
method | result | size |
risch | \(\frac {\left (3 \,{\mathrm e}^{x} x^{2}+9 x^{2}+3 \,{\mathrm e}^{x} x +4 \,{\mathrm e}^{x}+12\right ) {\mathrm e}^{-\frac {2}{x^{2}}}}{3 x \left (3+{\mathrm e}^{x}\right )}\) | \(41\) |
norman | \(\frac {\left ({\mathrm e}^{x} x^{3}+{\mathrm e}^{x} x^{4}+4 x^{2}+3 x^{4}+\frac {4 \,{\mathrm e}^{x} x^{2}}{3}\right ) {\mathrm e}^{-\frac {2}{x^{2}}}}{x^{3} \left (3+{\mathrm e}^{x}\right )}\) | \(49\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{3} \, \int \frac {27 \, x^{4} + 72 \, x^{2} + {\left (3 \, x^{4} + 8 \, x^{2} + 12 \, x + 16\right )} e^{\left (2 \, x\right )} + 3 \, {\left (9 \, x^{4} + 16 \, x^{2} + 12 \, x + 32\right )} e^{x} + 144}{x^{4} e^{\left (2 \, x + \frac {2}{x^{2}}\right )} + 6 \, x^{4} e^{\left (x + \frac {2}{x^{2}}\right )} + 9 \, x^{4} e^{\left (\frac {2}{x^{2}}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.37, size = 40, normalized size = 1.25 \begin {gather*} \frac {{\mathrm {e}}^{-\frac {2}{x^2}}\,\left (4\,{\mathrm {e}}^x+3\,x^2\,{\mathrm {e}}^x+3\,x\,{\mathrm {e}}^x+9\,x^2+12\right )}{3\,x\,\left ({\mathrm {e}}^x+3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 39, normalized size = 1.22 \begin {gather*} - \frac {3}{e^{\frac {2}{x^{2}}} e^{x} + 3 e^{\frac {2}{x^{2}}}} + \frac {\left (3 x^{2} + 3 x + 4\right ) e^{- \frac {2}{x^{2}}}}{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________