Optimal. Leaf size=19 \[ -e^{5 e^{-x} x}+\log \left (e^x x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x} \left (e^x (1+x)+e^{5 e^{-x} x} \left (-5 x+5 x^2\right )\right )}{x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+5 e^{-e^{-x} \left (-5+e^x\right ) x} (-1+x)+\frac {1}{x}\right ) \, dx\\ &=x+\log (x)+5 \int e^{-e^{-x} \left (-5+e^x\right ) x} (-1+x) \, dx\\ &=x+\log (x)+5 \int \left (-e^{-e^{-x} \left (-5+e^x\right ) x}+e^{-e^{-x} \left (-5+e^x\right ) x} x\right ) \, dx\\ &=x+\log (x)-5 \int e^{-e^{-x} \left (-5+e^x\right ) x} \, dx+5 \int e^{-e^{-x} \left (-5+e^x\right ) x} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 16, normalized size = 0.84 \begin {gather*} -e^{5 e^{-x} x}+x+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.95, size = 14, normalized size = 0.74 \begin {gather*} x - e^{\left (5 \, x e^{\left (-x\right )}\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 31, normalized size = 1.63 \begin {gather*} {\left (x e^{\left (-x\right )} + e^{\left (-x\right )} \log \relax (x) - e^{\left (5 \, x e^{\left (-x\right )} - x\right )}\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 0.79
method | result | size |
risch | \(x +\ln \relax (x )-{\mathrm e}^{5 x \,{\mathrm e}^{-x}}\) | \(15\) |
norman | \(\left ({\mathrm e}^{x} x -{\mathrm e}^{x} {\mathrm e}^{5 x \,{\mathrm e}^{-x}}\right ) {\mathrm e}^{-x}+\ln \relax (x )\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 14, normalized size = 0.74 \begin {gather*} x - e^{\left (5 \, x e^{\left (-x\right )}\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.16, size = 14, normalized size = 0.74 \begin {gather*} x-{\mathrm {e}}^{5\,x\,{\mathrm {e}}^{-x}}+\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 12, normalized size = 0.63 \begin {gather*} x - e^{5 x e^{- x}} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________