Optimal. Leaf size=24 \[ 3+e^{\frac {e^{x^2}}{x}}+\frac {16}{x^2 \log ^2\left (x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-64-32 \log \left (x^2\right )+e^{\frac {e^{x^2}}{x}+x^2} \left (-x+2 x^3\right ) \log ^3\left (x^2\right )}{x^3 \log ^3\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^{\frac {e^{x^2}}{x}+x^2} \left (-1+2 x^2\right )}{x^2}-\frac {32 \left (2+\log \left (x^2\right )\right )}{x^3 \log ^3\left (x^2\right )}\right ) \, dx\\ &=-\left (32 \int \frac {2+\log \left (x^2\right )}{x^3 \log ^3\left (x^2\right )} \, dx\right )+\int \frac {e^{\frac {e^{x^2}}{x}+x^2} \left (-1+2 x^2\right )}{x^2} \, dx\\ &=-8 \text {Ei}\left (-\log \left (x^2\right )\right ) \left (2+\log \left (x^2\right )\right )+\frac {8 \left (2+\log \left (x^2\right )\right )}{x^2 \log ^2\left (x^2\right )}-\frac {8 \left (2+\log \left (x^2\right )\right )}{x^2 \log \left (x^2\right )}+64 \int \frac {-1+\log \left (x^2\right )+x^2 \text {Ei}\left (-\log \left (x^2\right )\right ) \log ^2\left (x^2\right )}{4 x^3 \log ^2\left (x^2\right )} \, dx+\int \left (2 e^{\frac {e^{x^2}}{x}+x^2}-\frac {e^{\frac {e^{x^2}}{x}+x^2}}{x^2}\right ) \, dx\\ &=-8 \text {Ei}\left (-\log \left (x^2\right )\right ) \left (2+\log \left (x^2\right )\right )+\frac {8 \left (2+\log \left (x^2\right )\right )}{x^2 \log ^2\left (x^2\right )}-\frac {8 \left (2+\log \left (x^2\right )\right )}{x^2 \log \left (x^2\right )}+2 \int e^{\frac {e^{x^2}}{x}+x^2} \, dx+16 \int \frac {-1+\log \left (x^2\right )+x^2 \text {Ei}\left (-\log \left (x^2\right )\right ) \log ^2\left (x^2\right )}{x^3 \log ^2\left (x^2\right )} \, dx-\int \frac {e^{\frac {e^{x^2}}{x}+x^2}}{x^2} \, dx\\ &=-8 \text {Ei}\left (-\log \left (x^2\right )\right ) \left (2+\log \left (x^2\right )\right )+\frac {8 \left (2+\log \left (x^2\right )\right )}{x^2 \log ^2\left (x^2\right )}-\frac {8 \left (2+\log \left (x^2\right )\right )}{x^2 \log \left (x^2\right )}+2 \int e^{\frac {e^{x^2}}{x}+x^2} \, dx+8 \operatorname {Subst}\left (\int \frac {-1+\log (x)+x \text {Ei}(-\log (x)) \log ^2(x)}{x^2 \log ^2(x)} \, dx,x,x^2\right )-\int \frac {e^{\frac {e^{x^2}}{x}+x^2}}{x^2} \, dx\\ &=-8 \text {Ei}\left (-\log \left (x^2\right )\right ) \left (2+\log \left (x^2\right )\right )+\frac {8 \left (2+\log \left (x^2\right )\right )}{x^2 \log ^2\left (x^2\right )}-\frac {8 \left (2+\log \left (x^2\right )\right )}{x^2 \log \left (x^2\right )}+2 \int e^{\frac {e^{x^2}}{x}+x^2} \, dx+8 \operatorname {Subst}\left (\int \left (\frac {\text {Ei}(-\log (x))}{x}-\frac {1}{x^2 \log ^2(x)}+\frac {1}{x^2 \log (x)}\right ) \, dx,x,x^2\right )-\int \frac {e^{\frac {e^{x^2}}{x}+x^2}}{x^2} \, dx\\ &=-8 \text {Ei}\left (-\log \left (x^2\right )\right ) \left (2+\log \left (x^2\right )\right )+\frac {8 \left (2+\log \left (x^2\right )\right )}{x^2 \log ^2\left (x^2\right )}-\frac {8 \left (2+\log \left (x^2\right )\right )}{x^2 \log \left (x^2\right )}+2 \int e^{\frac {e^{x^2}}{x}+x^2} \, dx+8 \operatorname {Subst}\left (\int \frac {\text {Ei}(-\log (x))}{x} \, dx,x,x^2\right )-8 \operatorname {Subst}\left (\int \frac {1}{x^2 \log ^2(x)} \, dx,x,x^2\right )+8 \operatorname {Subst}\left (\int \frac {1}{x^2 \log (x)} \, dx,x,x^2\right )-\int \frac {e^{\frac {e^{x^2}}{x}+x^2}}{x^2} \, dx\\ &=\frac {8}{x^2 \log \left (x^2\right )}-8 \text {Ei}\left (-\log \left (x^2\right )\right ) \left (2+\log \left (x^2\right )\right )+\frac {8 \left (2+\log \left (x^2\right )\right )}{x^2 \log ^2\left (x^2\right )}-\frac {8 \left (2+\log \left (x^2\right )\right )}{x^2 \log \left (x^2\right )}+2 \int e^{\frac {e^{x^2}}{x}+x^2} \, dx+8 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log \left (x^2\right )\right )+8 \operatorname {Subst}\left (\int \text {Ei}(-x) \, dx,x,\log \left (x^2\right )\right )+8 \operatorname {Subst}\left (\int \frac {1}{x^2 \log (x)} \, dx,x,x^2\right )-\int \frac {e^{\frac {e^{x^2}}{x}+x^2}}{x^2} \, dx\\ &=\frac {8}{x^2}+8 \text {Ei}\left (-\log \left (x^2\right )\right )+\frac {8}{x^2 \log \left (x^2\right )}+8 \text {Ei}\left (-\log \left (x^2\right )\right ) \log \left (x^2\right )-8 \text {Ei}\left (-\log \left (x^2\right )\right ) \left (2+\log \left (x^2\right )\right )+\frac {8 \left (2+\log \left (x^2\right )\right )}{x^2 \log ^2\left (x^2\right )}-\frac {8 \left (2+\log \left (x^2\right )\right )}{x^2 \log \left (x^2\right )}+2 \int e^{\frac {e^{x^2}}{x}+x^2} \, dx+8 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log \left (x^2\right )\right )-\int \frac {e^{\frac {e^{x^2}}{x}+x^2}}{x^2} \, dx\\ &=\frac {8}{x^2}+16 \text {Ei}\left (-\log \left (x^2\right )\right )+\frac {8}{x^2 \log \left (x^2\right )}+8 \text {Ei}\left (-\log \left (x^2\right )\right ) \log \left (x^2\right )-8 \text {Ei}\left (-\log \left (x^2\right )\right ) \left (2+\log \left (x^2\right )\right )+\frac {8 \left (2+\log \left (x^2\right )\right )}{x^2 \log ^2\left (x^2\right )}-\frac {8 \left (2+\log \left (x^2\right )\right )}{x^2 \log \left (x^2\right )}+2 \int e^{\frac {e^{x^2}}{x}+x^2} \, dx-\int \frac {e^{\frac {e^{x^2}}{x}+x^2}}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 23, normalized size = 0.96 \begin {gather*} e^{\frac {e^{x^2}}{x}}+\frac {16}{x^2 \log ^2\left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.65, size = 46, normalized size = 1.92 \begin {gather*} \frac {{\left (x^{2} e^{\left (\frac {x^{3} + e^{\left (x^{2}\right )}}{x}\right )} \log \left (x^{2}\right )^{2} + 16 \, e^{\left (x^{2}\right )}\right )} e^{\left (-x^{2}\right )}}{x^{2} \log \left (x^{2}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (2 \, x^{3} - x\right )} e^{\left (x^{2} + \frac {e^{\left (x^{2}\right )}}{x}\right )} \log \left (x^{2}\right )^{3} - 32 \, \log \left (x^{2}\right ) - 64}{x^{3} \log \left (x^{2}\right )^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 22, normalized size = 0.92
method | result | size |
default | \(\frac {16}{x^{2} \ln \left (x^{2}\right )^{2}}+{\mathrm e}^{\frac {{\mathrm e}^{x^{2}}}{x}}\) | \(22\) |
risch | \(-\frac {64}{x^{2} \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (x )\right )^{2}}+{\mathrm e}^{\frac {{\mathrm e}^{x^{2}}}{x}}\) | \(68\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 27, normalized size = 1.12 \begin {gather*} \frac {x^{2} e^{\left (\frac {e^{\left (x^{2}\right )}}{x}\right )} \log \relax (x)^{2} + 4}{x^{2} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.21, size = 21, normalized size = 0.88 \begin {gather*} {\mathrm {e}}^{\frac {{\mathrm {e}}^{x^2}}{x}}+\frac {16}{x^2\,{\ln \left (x^2\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.42, size = 19, normalized size = 0.79 \begin {gather*} e^{\frac {e^{x^{2}}}{x}} + \frac {16}{x^{2} \log {\left (x^{2} \right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________