Optimal. Leaf size=20 \[ \left (x-16 x^4-\frac {4}{x+\log (4) \log (5)}\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.24, antiderivative size = 77, normalized size of antiderivative = 3.85, number of steps used = 2, number of rules used = 1, integrand size = 141, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.007, Rules used = {2074} \begin {gather*} 256 x^8-32 x^5+128 x^3+x^2 (1-128 \log (4) \log (5))+\frac {8 \log (4) \log (5) \left (1+16 \log ^3(4) \log ^3(5)\right )}{x+\log (4) \log (5)}+128 x \log ^2(4) \log ^2(5)+\frac {16}{(x+\log (4) \log (5))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (384 x^2-160 x^4+2048 x^7+128 \log ^2(4) \log ^2(5)-\frac {32}{(x+\log (4) \log (5))^3}-2 x (-1+128 \log (4) \log (5))-\frac {8 \left (\log (4) \log (5)+16 \log ^4(4) \log ^4(5)\right )}{(x+\log (4) \log (5))^2}\right ) \, dx\\ &=128 x^3-32 x^5+256 x^8+128 x \log ^2(4) \log ^2(5)+x^2 (1-128 \log (4) \log (5))+\frac {16}{(x+\log (4) \log (5))^2}+\frac {8 \log (4) \log (5) \left (1+16 \log ^3(4) \log ^3(5)\right )}{x+\log (4) \log (5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.12, size = 221, normalized size = 11.05 \begin {gather*} \frac {16-32 x^7+256 x^{10}-64 x^6 \log (4) \log (5)+512 x^9 \log (4) \log (5)+8 \log ^2(4) \log ^2(5)+256 x^8 \log ^2(4) \log ^2(5)-\log ^4(4) \log ^4(5)+512 \log ^5(4) \log ^5(5)-32 \log ^7(4) \log ^7(5)-256 \log ^{10}(4) \log ^{10}(5)+x^4 (1+128 \log (4) \log (5))-32 x^5 \left (-4+\log ^2(4) \log ^2(5)\right )-32 x^2 \log ^3(4) \log ^3(5) \left (-16+\log ^2(4) \log ^2(5)+8 \log ^5(4) \log ^5(5)\right )-2 x \log (4) \log (5) \left (-4+\log ^2(4) \log ^2(5)-512 \log ^3(4) \log ^3(5)+32 \log ^5(4) \log ^5(5)+256 \log ^8(4) \log ^8(5)\right )+x^3 \log (5) \log (16)}{(x+\log (4) \log (5))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.67, size = 131, normalized size = 6.55 \begin {gather*} \frac {256 \, x^{10} + 4096 \, \log \relax (5)^{5} \log \relax (2)^{5} + 4096 \, x \log \relax (5)^{4} \log \relax (2)^{4} + 1024 \, x^{2} \log \relax (5)^{3} \log \relax (2)^{3} - 32 \, x^{7} + 128 \, x^{5} + 4 \, {\left (256 \, x^{8} - 32 \, x^{5} + x^{2} + 8\right )} \log \relax (5)^{2} \log \relax (2)^{2} + x^{4} + 4 \, {\left (256 \, x^{9} - 32 \, x^{6} + 64 \, x^{4} + x^{3} + 4 \, x\right )} \log \relax (5) \log \relax (2) + 16}{4 \, \log \relax (5)^{2} \log \relax (2)^{2} + 4 \, x \log \relax (5) \log \relax (2) + x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 90, normalized size = 4.50 \begin {gather*} 256 \, x^{8} - 32 \, x^{5} + 512 \, x \log \relax (5)^{2} \log \relax (2)^{2} - 256 \, x^{2} \log \relax (5) \log \relax (2) + 128 \, x^{3} + x^{2} + \frac {16 \, {\left (256 \, \log \relax (5)^{5} \log \relax (2)^{5} + 128 \, x \log \relax (5)^{4} \log \relax (2)^{4} + 2 \, \log \relax (5)^{2} \log \relax (2)^{2} + x \log \relax (5) \log \relax (2) + 1\right )}}{{\left (2 \, \log \relax (5) \log \relax (2) + x\right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.14, size = 80, normalized size = 4.00
method | result | size |
default | \(256 x^{8}+512 x \ln \relax (2)^{2} \ln \relax (5)^{2}-32 x^{5}-256 x^{2} \ln \relax (2) \ln \relax (5)+128 x^{3}+x^{2}+\frac {16}{\left (2 \ln \relax (2) \ln \relax (5)+x \right )^{2}}+\frac {16 \ln \relax (2) \ln \relax (5) \left (128 \ln \relax (2)^{3} \ln \relax (5)^{3}+1\right )}{2 \ln \relax (2) \ln \relax (5)+x}\) | \(80\) |
risch | \(256 x^{8}+512 x \ln \relax (2)^{2} \ln \relax (5)^{2}-32 x^{5}-256 x^{2} \ln \relax (2) \ln \relax (5)+128 x^{3}+x^{2}+\frac {\left (512 \ln \relax (5)^{4} \ln \relax (2)^{4}+4 \ln \relax (2) \ln \relax (5)\right ) x +1024 \ln \relax (2)^{5} \ln \relax (5)^{5}+8 \ln \relax (2)^{2} \ln \relax (5)^{2}+4}{\ln \relax (2)^{2} \ln \relax (5)^{2}+x \ln \relax (2) \ln \relax (5)+\frac {x^{2}}{4}}\) | \(105\) |
norman | \(\frac {\left (256 \ln \relax (2) \ln \relax (5)+1\right ) x^{4}+\left (-128 \ln \relax (2)^{2} \ln \relax (5)^{2}+128\right ) x^{5}+\left (-16 \ln \relax (2)^{3} \ln \relax (5)^{3}+16 \ln \relax (2) \ln \relax (5)\right ) x -32 x^{7}+256 x^{10}+4 \ln \relax (2) \ln \relax (5) x^{3}-128 \ln \relax (5) \ln \relax (2) x^{6}+1024 \ln \relax (5) \ln \relax (2) x^{9}+1024 \ln \relax (5)^{2} \ln \relax (2)^{2} x^{8}+16-16 \ln \relax (5)^{4} \ln \relax (2)^{4}+32 \ln \relax (2)^{2} \ln \relax (5)^{2}}{\left (2 \ln \relax (2) \ln \relax (5)+x \right )^{2}}\) | \(131\) |
gosper | \(-\frac {-1024 \ln \relax (5)^{2} \ln \relax (2)^{2} x^{8}-1024 \ln \relax (5) \ln \relax (2) x^{9}-256 x^{10}+128 \ln \relax (5)^{2} \ln \relax (2)^{2} x^{5}+16 \ln \relax (5)^{4} \ln \relax (2)^{4}+128 \ln \relax (5) \ln \relax (2) x^{6}+16 \ln \relax (5)^{3} \ln \relax (2)^{3} x +32 x^{7}-256 x^{4} \ln \relax (5) \ln \relax (2)-4 \ln \relax (2) \ln \relax (5) x^{3}-128 x^{5}-32 \ln \relax (2)^{2} \ln \relax (5)^{2}-x^{4}-16 x \ln \relax (2) \ln \relax (5)-16}{4 \ln \relax (2)^{2} \ln \relax (5)^{2}+4 x \ln \relax (2) \ln \relax (5)+x^{2}}\) | \(148\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 105, normalized size = 5.25 \begin {gather*} 256 \, x^{8} - 32 \, x^{5} + 512 \, x \log \relax (5)^{2} \log \relax (2)^{2} - {\left (256 \, \log \relax (5) \log \relax (2) - 1\right )} x^{2} + 128 \, x^{3} + \frac {16 \, {\left (256 \, \log \relax (5)^{5} \log \relax (2)^{5} + 2 \, \log \relax (5)^{2} \log \relax (2)^{2} + {\left (128 \, \log \relax (5)^{4} \log \relax (2)^{4} + \log \relax (5) \log \relax (2)\right )} x + 1\right )}}{4 \, \log \relax (5)^{2} \log \relax (2)^{2} + 4 \, x \log \relax (5) \log \relax (2) + x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.22, size = 135, normalized size = 6.75 \begin {gather*} \frac {x\,\left (16\,\ln \relax (2)\,\ln \relax (5)+2048\,{\ln \relax (2)}^4\,{\ln \relax (5)}^4\right )+32\,{\ln \relax (2)}^2\,{\ln \relax (5)}^2+4096\,{\ln \relax (2)}^5\,{\ln \relax (5)}^5+16}{x^2+4\,\ln \relax (2)\,\ln \relax (5)\,x+4\,{\ln \relax (2)}^2\,{\ln \relax (5)}^2}+x\,\left (6\,\ln \relax (2)\,\ln \relax (5)\,\left (512\,\ln \relax (2)\,\ln \relax (5)-2\right )-4608\,{\ln \relax (2)}^2\,{\ln \relax (5)}^2+4\,\ln \relax (2)\,\ln \relax (5)\,\left (512\,\ln \relax (2)\,\ln \relax (5)+3\right )\right )-x^2\,\left (256\,\ln \relax (2)\,\ln \relax (5)-1\right )+128\,x^3-32\,x^5+256\,x^8 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.47, size = 114, normalized size = 5.70 \begin {gather*} 256 x^{8} - 32 x^{5} + 128 x^{3} + x^{2} \left (- 256 \log {\relax (2 )} \log {\relax (5 )} + 1\right ) + 512 x \log {\relax (2 )}^{2} \log {\relax (5 )}^{2} + \frac {x \left (16 \log {\relax (2 )} \log {\relax (5 )} + 2048 \log {\relax (2 )}^{4} \log {\relax (5 )}^{4}\right ) + 16 + 32 \log {\relax (2 )}^{2} \log {\relax (5 )}^{2} + 4096 \log {\relax (2 )}^{5} \log {\relax (5 )}^{5}}{x^{2} + 4 x \log {\relax (2 )} \log {\relax (5 )} + 4 \log {\relax (2 )}^{2} \log {\relax (5 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________