Optimal. Leaf size=24 \[ x+(3+x) \left (x+\frac {64 \left (e^3-\frac {\log (2)}{x}\right )}{x^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 37, normalized size of antiderivative = 1.54, number of steps used = 2, number of rules used = 1, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.028, Rules used = {14} \begin {gather*} -\frac {192 \log (2)}{x^3}+x^2+\frac {64 \left (3 e^3-\log (2)\right )}{x^2}+4 x+\frac {64 e^3}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (4-\frac {64 e^3}{x^2}+2 x-\frac {128 \left (3 e^3-\log (2)\right )}{x^3}+\frac {576 \log (2)}{x^4}\right ) \, dx\\ &=\frac {64 e^3}{x}+4 x+x^2+\frac {64 \left (3 e^3-\log (2)\right )}{x^2}-\frac {192 \log (2)}{x^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 31, normalized size = 1.29 \begin {gather*} \frac {4 x^4+x^5+64 e^3 x (3+x)-192 \log (2)-64 x \log (2)}{x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 31, normalized size = 1.29 \begin {gather*} \frac {x^{5} + 4 \, x^{4} + 64 \, {\left (x^{2} + 3 \, x\right )} e^{3} - 64 \, {\left (x + 3\right )} \log \relax (2)}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.33, size = 33, normalized size = 1.38 \begin {gather*} x^{2} + 4 \, x + \frac {64 \, {\left (x^{2} e^{3} + 3 \, x e^{3} - x \log \relax (2) - 3 \, \log \relax (2)\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 35, normalized size = 1.46
method | result | size |
gosper | \(\frac {x^{5}+4 x^{4}+64 x^{2} {\mathrm e}^{3}+192 x \,{\mathrm e}^{3}-64 x \ln \relax (2)-192 \ln \relax (2)}{x^{3}}\) | \(35\) |
risch | \(x^{2}+4 x +\frac {64 x^{2} {\mathrm e}^{3}+\left (192 \,{\mathrm e}^{3}-64 \ln \relax (2)\right ) x -192 \ln \relax (2)}{x^{3}}\) | \(35\) |
default | \(4 x +x^{2}+\frac {64 \,{\mathrm e}^{3}}{x}-\frac {-192 \,{\mathrm e}^{3}+64 \ln \relax (2)}{x^{2}}-\frac {192 \ln \relax (2)}{x^{3}}\) | \(36\) |
norman | \(\frac {x^{5}+\left (192 \,{\mathrm e}^{3}-64 \ln \relax (2)\right ) x +4 x^{4}+64 x^{2} {\mathrm e}^{3}-192 \ln \relax (2)}{x^{3}}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 34, normalized size = 1.42 \begin {gather*} x^{2} + 4 \, x + \frac {64 \, {\left (x^{2} e^{3} + x {\left (3 \, e^{3} - \log \relax (2)\right )} - 3 \, \log \relax (2)\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 34, normalized size = 1.42 \begin {gather*} 4\,x+\frac {64\,{\mathrm {e}}^3\,x^2+\left (192\,{\mathrm {e}}^3-64\,\ln \relax (2)\right )\,x-192\,\ln \relax (2)}{x^3}+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 34, normalized size = 1.42 \begin {gather*} x^{2} + 4 x + \frac {64 x^{2} e^{3} + x \left (- 64 \log {\relax (2 )} + 192 e^{3}\right ) - 192 \log {\relax (2 )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________