Optimal. Leaf size=18 \[ \left (x+\log \left (4+x+\frac {\log (x)}{x}+\log (4 x)\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.32, antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 117, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {6688, 12, 6686} \begin {gather*} \left (x+\log \left (x+\log (4 x)+\frac {\log (x)}{x}+4\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (1+x+5 x^2+x^3+(-1+x) \log (x)+x^2 \log (4 x)\right ) \left (x+\log \left (4+x+\frac {\log (x)}{x}+\log (4 x)\right )\right )}{x (\log (x)+x (4+x+\log (4 x)))} \, dx\\ &=2 \int \frac {\left (1+x+5 x^2+x^3+(-1+x) \log (x)+x^2 \log (4 x)\right ) \left (x+\log \left (4+x+\frac {\log (x)}{x}+\log (4 x)\right )\right )}{x (\log (x)+x (4+x+\log (4 x)))} \, dx\\ &=\left (x+\log \left (4+x+\frac {\log (x)}{x}+\log (4 x)\right )\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 18, normalized size = 1.00 \begin {gather*} \left (x+\log \left (4+x+\frac {\log (x)}{x}+\log (4 x)\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.92, size = 55, normalized size = 3.06 \begin {gather*} x^{2} + 2 \, x \log \left (\frac {x^{2} + 2 \, x \log \relax (2) + {\left (x + 1\right )} \log \relax (x) + 4 \, x}{x}\right ) + \log \left (\frac {x^{2} + 2 \, x \log \relax (2) + {\left (x + 1\right )} \log \relax (x) + 4 \, x}{x}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (x^{4} + x^{3} \log \left (4 \, x\right ) + 5 \, x^{3} + x^{2} + {\left (x^{2} - x\right )} \log \relax (x) + {\left (x^{3} + x^{2} \log \left (4 \, x\right ) + 5 \, x^{2} + {\left (x - 1\right )} \log \relax (x) + x + 1\right )} \log \left (\frac {x^{2} + x \log \left (4 \, x\right ) + 4 \, x + \log \relax (x)}{x}\right ) + x\right )}}{x^{3} + x^{2} \log \left (4 \, x\right ) + 4 \, x^{2} + x \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.03, size = 0, normalized size = 0.00 \[\int \frac {\left (2 x^{2} \ln \left (4 x \right )+\left (2 x -2\right ) \ln \relax (x )+2 x^{3}+10 x^{2}+2 x +2\right ) \ln \left (\frac {x \ln \left (4 x \right )+\ln \relax (x )+x^{2}+4 x}{x}\right )+2 x^{3} \ln \left (4 x \right )+\left (2 x^{2}-2 x \right ) \ln \relax (x )+2 x^{4}+10 x^{3}+2 x^{2}+2 x}{x^{2} \ln \left (4 x \right )+x \ln \relax (x )+x^{3}+4 x^{2}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2 \, \int \frac {x^{4} + x^{3} \log \left (4 \, x\right ) + 5 \, x^{3} + x^{2} + {\left (x^{2} - x\right )} \log \relax (x) + {\left (x^{3} + x^{2} \log \left (4 \, x\right ) + 5 \, x^{2} + {\left (x - 1\right )} \log \relax (x) + x + 1\right )} \log \left (\frac {x^{2} + x \log \left (4 \, x\right ) + 4 \, x + \log \relax (x)}{x}\right ) + x}{x^{3} + x^{2} \log \left (4 \, x\right ) + 4 \, x^{2} + x \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.80, size = 24, normalized size = 1.33 \begin {gather*} {\left (x+\ln \left (\frac {4\,x+\ln \relax (x)+x\,\ln \left (4\,x\right )+x^2}{x}\right )\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.59, size = 51, normalized size = 2.83 \begin {gather*} x^{2} + 2 x \log {\left (\frac {x^{2} + x \left (\log {\relax (x )} + \log {\relax (4 )}\right ) + 4 x + \log {\relax (x )}}{x} \right )} + \log {\left (\frac {x^{2} + x \left (\log {\relax (x )} + \log {\relax (4 )}\right ) + 4 x + \log {\relax (x )}}{x} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________