Optimal. Leaf size=28 \[ \frac {4 \left (2-e^x x\right ) \log (4)}{e^{3-e^{e^x}}+\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 10.59, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-3+e^{e^x}} \left (e^x \left (-4 x-4 x^2\right ) \log (4)+e^{e^x} \left (8 e^x x \log (4)-4 e^{2 x} x^2 \log (4)\right )\right )+e^{-6+2 e^{e^x}} \left (-8 \log (4)+4 e^x x \log (4)+e^x \left (-4 x-4 x^2\right ) \log (4) \log (x)\right )}{x+2 e^{-3+e^{e^x}} x \log (x)+e^{-6+2 e^{e^x}} x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^6 \left (e^{-3+e^{e^x}} \left (e^x \left (-4 x-4 x^2\right ) \log (4)+e^{e^x} \left (8 e^x x \log (4)-4 e^{2 x} x^2 \log (4)\right )\right )+e^{-6+2 e^{e^x}} \left (-8 \log (4)+4 e^x x \log (4)+e^x \left (-4 x-4 x^2\right ) \log (4) \log (x)\right )\right )}{x \left (e^3+e^{e^{e^x}} \log (x)\right )^2} \, dx\\ &=e^6 \int \frac {e^{-3+e^{e^x}} \left (e^x \left (-4 x-4 x^2\right ) \log (4)+e^{e^x} \left (8 e^x x \log (4)-4 e^{2 x} x^2 \log (4)\right )\right )+e^{-6+2 e^{e^x}} \left (-8 \log (4)+4 e^x x \log (4)+e^x \left (-4 x-4 x^2\right ) \log (4) \log (x)\right )}{x \left (e^3+e^{e^{e^x}} \log (x)\right )^2} \, dx\\ &=e^6 \int \left (-\frac {8 e^{2 \left (-3+e^{e^x}\right )} \log (4)}{x \left (e^3+e^{e^{e^x}} \log (x)\right )^2}-\frac {4 e^{-3+e^{e^x}+e^x+2 x} x \log (4)}{\left (e^3+e^{e^{e^x}} \log (x)\right )^2}-\frac {4 e^{-6+e^{e^x}+x} \log (4) \left (e^3-e^{e^{e^x}}-2 e^{3+e^x}+e^3 x+e^{e^{e^x}} \log (x)+e^{e^{e^x}} x \log (x)\right )}{\left (e^3+e^{e^{e^x}} \log (x)\right )^2}\right ) \, dx\\ &=-\left (\left (4 e^6 \log (4)\right ) \int \frac {e^{-3+e^{e^x}+e^x+2 x} x}{\left (e^3+e^{e^{e^x}} \log (x)\right )^2} \, dx\right )-\left (4 e^6 \log (4)\right ) \int \frac {e^{-6+e^{e^x}+x} \left (e^3-e^{e^{e^x}}-2 e^{3+e^x}+e^3 x+e^{e^{e^x}} \log (x)+e^{e^{e^x}} x \log (x)\right )}{\left (e^3+e^{e^{e^x}} \log (x)\right )^2} \, dx-\left (8 e^6 \log (4)\right ) \int \frac {e^{2 \left (-3+e^{e^x}\right )}}{x \left (e^3+e^{e^{e^x}} \log (x)\right )^2} \, dx\\ &=-\left (\left (4 e^6 \log (4)\right ) \int \frac {e^{-3+e^{e^x}+e^x+2 x} x}{\left (e^3+e^{e^{e^x}} \log (x)\right )^2} \, dx\right )-\left (4 e^6 \log (4)\right ) \int \left (-\frac {e^{-3+e^{e^x}+x} \left (-1+2 e^{e^x} \log (x)\right )}{\log (x) \left (e^3+e^{e^{e^x}} \log (x)\right )^2}+\frac {e^{-6+e^{e^x}+x} (-1+\log (x)+x \log (x))}{\log (x) \left (e^3+e^{e^{e^x}} \log (x)\right )}\right ) \, dx-\left (8 e^6 \log (4)\right ) \int \frac {e^{2 \left (-3+e^{e^x}\right )}}{x \left (e^3+e^{e^{e^x}} \log (x)\right )^2} \, dx\\ &=-\left (\left (4 e^6 \log (4)\right ) \int \frac {e^{-3+e^{e^x}+e^x+2 x} x}{\left (e^3+e^{e^{e^x}} \log (x)\right )^2} \, dx\right )+\left (4 e^6 \log (4)\right ) \int \frac {e^{-3+e^{e^x}+x} \left (-1+2 e^{e^x} \log (x)\right )}{\log (x) \left (e^3+e^{e^{e^x}} \log (x)\right )^2} \, dx-\left (4 e^6 \log (4)\right ) \int \frac {e^{-6+e^{e^x}+x} (-1+\log (x)+x \log (x))}{\log (x) \left (e^3+e^{e^{e^x}} \log (x)\right )} \, dx-\left (8 e^6 \log (4)\right ) \int \frac {e^{2 \left (-3+e^{e^x}\right )}}{x \left (e^3+e^{e^{e^x}} \log (x)\right )^2} \, dx\\ &=-\left (\left (4 e^6 \log (4)\right ) \int \frac {e^{-3+e^{e^x}+e^x+2 x} x}{\left (e^3+e^{e^{e^x}} \log (x)\right )^2} \, dx\right )+\left (4 e^6 \log (4)\right ) \int \left (\frac {2 e^{-3+e^{e^x}+e^x+x}}{\left (e^3+e^{e^{e^x}} \log (x)\right )^2}-\frac {e^{-3+e^{e^x}+x}}{\log (x) \left (e^3+e^{e^{e^x}} \log (x)\right )^2}\right ) \, dx-\left (4 e^6 \log (4)\right ) \int \left (\frac {e^{-6+e^{e^x}+x}}{e^3+e^{e^{e^x}} \log (x)}+\frac {e^{-6+e^{e^x}+x} x}{e^3+e^{e^{e^x}} \log (x)}-\frac {e^{-6+e^{e^x}+x}}{\log (x) \left (e^3+e^{e^{e^x}} \log (x)\right )}\right ) \, dx-\left (8 e^6 \log (4)\right ) \int \frac {e^{2 \left (-3+e^{e^x}\right )}}{x \left (e^3+e^{e^{e^x}} \log (x)\right )^2} \, dx\\ &=-\left (\left (4 e^6 \log (4)\right ) \int \frac {e^{-3+e^{e^x}+e^x+2 x} x}{\left (e^3+e^{e^{e^x}} \log (x)\right )^2} \, dx\right )-\left (4 e^6 \log (4)\right ) \int \frac {e^{-3+e^{e^x}+x}}{\log (x) \left (e^3+e^{e^{e^x}} \log (x)\right )^2} \, dx-\left (4 e^6 \log (4)\right ) \int \frac {e^{-6+e^{e^x}+x}}{e^3+e^{e^{e^x}} \log (x)} \, dx-\left (4 e^6 \log (4)\right ) \int \frac {e^{-6+e^{e^x}+x} x}{e^3+e^{e^{e^x}} \log (x)} \, dx+\left (4 e^6 \log (4)\right ) \int \frac {e^{-6+e^{e^x}+x}}{\log (x) \left (e^3+e^{e^{e^x}} \log (x)\right )} \, dx+\left (8 e^6 \log (4)\right ) \int \frac {e^{-3+e^{e^x}+e^x+x}}{\left (e^3+e^{e^{e^x}} \log (x)\right )^2} \, dx-\left (8 e^6 \log (4)\right ) \int \frac {e^{2 \left (-3+e^{e^x}\right )}}{x \left (e^3+e^{e^{e^x}} \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 34, normalized size = 1.21 \begin {gather*} -\frac {4 e^{e^{e^x}} \left (-2+e^x x\right ) \log (4)}{e^3+e^{e^{e^x}} \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 32, normalized size = 1.14 \begin {gather*} -\frac {8 \, {\left (x e^{x} \log \relax (2) - 2 \, \log \relax (2)\right )} e^{\left (e^{\left (e^{x}\right )} - 3\right )}}{e^{\left (e^{\left (e^{x}\right )} - 3\right )} \log \relax (x) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {8 \, {\left ({\left ({\left (x^{2} + x\right )} e^{x} \log \relax (2) \log \relax (x) - x e^{x} \log \relax (2) + 2 \, \log \relax (2)\right )} e^{\left (2 \, e^{\left (e^{x}\right )} - 6\right )} + {\left ({\left (x^{2} + x\right )} e^{x} \log \relax (2) + {\left (x^{2} e^{\left (2 \, x\right )} \log \relax (2) - 2 \, x e^{x} \log \relax (2)\right )} e^{\left (e^{x}\right )}\right )} e^{\left (e^{\left (e^{x}\right )} - 3\right )}\right )}}{x e^{\left (2 \, e^{\left (e^{x}\right )} - 6\right )} \log \relax (x)^{2} + 2 \, x e^{\left (e^{\left (e^{x}\right )} - 3\right )} \log \relax (x) + x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 43, normalized size = 1.54
method | result | size |
risch | \(-\frac {8 \left ({\mathrm e}^{x} x -2\right ) \ln \relax (2)}{\ln \relax (x )}+\frac {8 \left ({\mathrm e}^{x} x -2\right ) \ln \relax (2)}{\ln \relax (x ) \left (\ln \relax (x ) {\mathrm e}^{-3+{\mathrm e}^{{\mathrm e}^{x}}}+1\right )}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.76, size = 29, normalized size = 1.04 \begin {gather*} -\frac {8 \, {\left (x e^{x} \log \relax (2) - 2 \, \log \relax (2)\right )} e^{\left (e^{\left (e^{x}\right )}\right )}}{e^{\left (e^{\left (e^{x}\right )}\right )} \log \relax (x) + e^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.56, size = 109, normalized size = 3.89 \begin {gather*} \frac {8\,\ln \relax (2)\,\left (2\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^x}-3}+x^2\,{\mathrm {e}}^{2\,x+{\mathrm {e}}^x}-x^2\,{\mathrm {e}}^{x+{\mathrm {e}}^x}\,{\mathrm {e}}^x-x\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^x}-3}\,{\mathrm {e}}^x+2\,x\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^x}-3}\,{\mathrm {e}}^{x+{\mathrm {e}}^x}\,\ln \relax (x)-x^2\,{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^x}-3}\,{\mathrm {e}}^{x+{\mathrm {e}}^x}\,{\mathrm {e}}^x\,\ln \relax (x)\right )}{\left (x\,{\mathrm {e}}^{x+{\mathrm {e}}^x}\,\ln \relax (x)+1\right )\,\left ({\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^x}-3}\,\ln \relax (x)+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.56, size = 53, normalized size = 1.89 \begin {gather*} - \frac {8 x e^{x} \log {\relax (2 )}}{\log {\relax (x )}} + \frac {16 \log {\relax (2 )}}{\log {\relax (x )}} + \frac {8 x e^{x} \log {\relax (2 )} - 16 \log {\relax (2 )}}{e^{e^{e^{x}} - 3} \log {\relax (x )}^{2} + \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________