Optimal. Leaf size=24 \[ e^{\left (e^{e^e}+e^{e^x}+\frac {1}{x}\right )^2} (26-x) \]
________________________________________________________________________________________
Rubi [B] time = 5.94, antiderivative size = 288, normalized size of antiderivative = 12.00, number of steps used = 1, number of rules used = 1, integrand size = 157, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.006, Rules used = {2288} \begin {gather*} \frac {\left (-e^{x+2 e^x} \left (26 x^3-x^4\right )+e^{e^x} \left (-x^2-e^x \left (26 x^2-x^3\right )+26 x\right )+e^{e^e} \left (-x^2-e^{x+e^x} \left (26 x^3-x^4\right )+26 x\right )-x+26\right ) \exp \left (\frac {e^{2 e^x} x^2+e^{2 e^e} x^2+2 e^{e^e} \left (e^{e^x} x^2+x\right )+2 e^{e^x} x+1}{x^2}\right )}{x^3 \left (\frac {e^{2 e^x} x^2+e^{2 e^e} x^2+2 e^{e^e} \left (e^{e^x} x^2+x\right )+2 e^{e^x} x+1}{x^3}-\frac {e^{x+2 e^x} x^2+e^{e^e} \left (e^{x+e^x} x^2+2 e^{e^x} x+1\right )+e^{2 e^x} x+e^{x+e^x} x+e^{2 e^e} x+e^{e^x}}{x^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\exp \left (\frac {1+2 e^{e^x} x+e^{2 e^e} x^2+e^{2 e^x} x^2+2 e^{e^e} \left (x+e^{e^x} x^2\right )}{x^2}\right ) \left (26-x-e^{2 e^x+x} \left (26 x^3-x^4\right )+e^{e^x} \left (26 x-x^2-e^x \left (26 x^2-x^3\right )\right )+e^{e^e} \left (26 x-x^2-e^{e^x+x} \left (26 x^3-x^4\right )\right )\right )}{x^3 \left (\frac {1+2 e^{e^x} x+e^{2 e^e} x^2+e^{2 e^x} x^2+2 e^{e^e} \left (x+e^{e^x} x^2\right )}{x^3}-\frac {e^{e^x}+e^{2 e^e} x+e^{2 e^x} x+e^{e^x+x} x+e^{2 e^x+x} x^2+e^{e^e} \left (1+2 e^{e^x} x+e^{e^x+x} x^2\right )}{x^2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.23, size = 29, normalized size = 1.21 \begin {gather*} -e^{\frac {\left (1+e^{e^e} x+e^{e^x} x\right )^2}{x^2}} (-26+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.76, size = 80, normalized size = 3.33 \begin {gather*} -{\left (x - 26\right )} e^{\left (\frac {{\left (x^{2} e^{\left (2 \, x + 2 \, e^{x}\right )} + x^{2} e^{\left (2 \, x + 2 \, e^{e}\right )} + 2 \, x e^{\left (2 \, x + e^{x}\right )} + 2 \, {\left (x^{2} e^{\left (2 \, x + e^{x}\right )} + x e^{\left (2 \, x\right )}\right )} e^{\left (e^{e}\right )} + e^{\left (2 \, x\right )}\right )} e^{\left (-2 \, x\right )}}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (x^{3} + 2 \, {\left (x^{4} - 26 \, x^{3}\right )} e^{\left (x + 2 \, e^{x}\right )} - 2 \, {\left (x^{2} - {\left (x^{3} - 26 \, x^{2}\right )} e^{x} - 26 \, x\right )} e^{\left (e^{x}\right )} - 2 \, {\left (x^{2} - {\left (x^{4} - 26 \, x^{3}\right )} e^{\left (x + e^{x}\right )} - 26 \, x\right )} e^{\left (e^{e}\right )} - 2 \, x + 52\right )} e^{\left (\frac {x^{2} e^{\left (2 \, e^{x}\right )} + x^{2} e^{\left (2 \, e^{e}\right )} + 2 \, x e^{\left (e^{x}\right )} + 2 \, {\left (x^{2} e^{\left (e^{x}\right )} + x\right )} e^{\left (e^{e}\right )} + 1}{x^{2}}\right )}}{x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 58, normalized size = 2.42
method | result | size |
risch | \(\left (26-x \right ) {\mathrm e}^{\frac {2 x^{2} {\mathrm e}^{{\mathrm e}^{x}+{\mathrm e}^{{\mathrm e}}}+x^{2} {\mathrm e}^{2 \,{\mathrm e}^{x}}+x^{2} {\mathrm e}^{2 \,{\mathrm e}^{{\mathrm e}}}+2 x \,{\mathrm e}^{{\mathrm e}^{x}}+2 \,{\mathrm e}^{{\mathrm e}^{{\mathrm e}}} x +1}{x^{2}}}\) | \(58\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.86, size = 57, normalized size = 2.38 \begin {gather*} -{\left (x e^{\left (e^{\left (2 \, e^{e}\right )}\right )} - 26 \, e^{\left (e^{\left (2 \, e^{e}\right )}\right )}\right )} e^{\left (\frac {2 \, e^{\left (e^{x}\right )}}{x} + \frac {2 \, e^{\left (e^{e}\right )}}{x} + \frac {1}{x^{2}} + e^{\left (2 \, e^{x}\right )} + 2 \, e^{\left (e^{x} + e^{e}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.42, size = 51, normalized size = 2.12 \begin {gather*} -{\mathrm {e}}^{{\mathrm {e}}^{2\,{\mathrm {e}}^x}}\,{\mathrm {e}}^{2\,{\mathrm {e}}^{{\mathrm {e}}^{\mathrm {e}}}\,{\mathrm {e}}^{{\mathrm {e}}^x}}\,{\mathrm {e}}^{\frac {1}{x^2}}\,{\mathrm {e}}^{\frac {2\,{\mathrm {e}}^{{\mathrm {e}}^{\mathrm {e}}}}{x}}\,{\mathrm {e}}^{\frac {2\,{\mathrm {e}}^{{\mathrm {e}}^x}}{x}}\,{\mathrm {e}}^{{\mathrm {e}}^{2\,{\mathrm {e}}^{\mathrm {e}}}}\,\left (x-26\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 20.16, size = 60, normalized size = 2.50 \begin {gather*} \left (26 - x\right ) e^{\frac {x^{2} e^{2 e^{x}} + x^{2} e^{2 e^{e}} + 2 x e^{e^{x}} + \left (2 x^{2} e^{e^{x}} + 2 x\right ) e^{e^{e}} + 1}{x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________