Optimal. Leaf size=22 \[ \frac {1}{2} x \left (e^{e^4}+\frac {x}{-2 x+x^2}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 20, normalized size of antiderivative = 0.91, number of steps used = 4, number of rules used = 3, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {27, 12, 1850} \begin {gather*} \frac {e^{e^4} x}{2}-\frac {1}{2-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2+e^{e^4} \left (4-4 x+x^2\right )}{2 (-2+x)^2} \, dx\\ &=\frac {1}{2} \int \frac {-2+e^{e^4} \left (4-4 x+x^2\right )}{(-2+x)^2} \, dx\\ &=\frac {1}{2} \int \left (e^{e^4}-\frac {2}{(-2+x)^2}\right ) \, dx\\ &=-\frac {1}{2-x}+\frac {e^{e^4} x}{2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 21, normalized size = 0.95 \begin {gather*} \frac {1}{2} \left (\frac {2}{-2+x}+e^{e^4} (-2+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.99, size = 20, normalized size = 0.91 \begin {gather*} \frac {{\left (x^{2} - 2 \, x\right )} e^{\left (e^{4}\right )} + 2}{2 \, {\left (x - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.36, size = 12, normalized size = 0.55 \begin {gather*} \frac {1}{2} \, x e^{\left (e^{4}\right )} + \frac {1}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.37, size = 13, normalized size = 0.59
method | result | size |
default | \(\frac {x \,{\mathrm e}^{{\mathrm e}^{4}}}{2}+\frac {1}{x -2}\) | \(13\) |
risch | \(\frac {x \,{\mathrm e}^{{\mathrm e}^{4}}}{2}+\frac {1}{x -2}\) | \(13\) |
gosper | \(\frac {x^{2} {\mathrm e}^{{\mathrm e}^{4}}+2-4 \,{\mathrm e}^{{\mathrm e}^{4}}}{2 x -4}\) | \(22\) |
norman | \(\frac {\frac {x^{2} {\mathrm e}^{{\mathrm e}^{4}}}{2}+1-2 \,{\mathrm e}^{{\mathrm e}^{4}}}{x -2}\) | \(22\) |
meijerg | \(-\frac {x}{4 \left (1-\frac {x}{2}\right )}-{\mathrm e}^{{\mathrm e}^{4}} \left (-\frac {x \left (-\frac {3 x}{2}+6\right )}{6 \left (1-\frac {x}{2}\right )}-2 \ln \left (1-\frac {x}{2}\right )\right )-2 \,{\mathrm e}^{{\mathrm e}^{4}} \left (\frac {x}{2-x}+\ln \left (1-\frac {x}{2}\right )\right )+\frac {x \,{\mathrm e}^{{\mathrm e}^{4}}}{2-x}\) | \(76\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 12, normalized size = 0.55 \begin {gather*} \frac {1}{2} \, x e^{\left (e^{4}\right )} + \frac {1}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.14, size = 12, normalized size = 0.55 \begin {gather*} \frac {1}{x-2}+\frac {x\,{\mathrm {e}}^{{\mathrm {e}}^4}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 12, normalized size = 0.55 \begin {gather*} \frac {x e^{e^{4}}}{2} + \frac {1}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________