Optimal. Leaf size=20 \[ \frac {2 x^2 \left (-\frac {3 e^{2 x}}{x}+x\right )}{e} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 32, normalized size of antiderivative = 1.60, number of steps used = 4, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {12, 2176, 2194} \begin {gather*} \frac {2 x^3}{e}+3 e^{2 x-1}-3 e^{2 x-1} (2 x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (e^{2 x} (-6-12 x)+6 x^2\right ) \, dx}{e}\\ &=\frac {2 x^3}{e}+\frac {\int e^{2 x} (-6-12 x) \, dx}{e}\\ &=\frac {2 x^3}{e}-3 e^{-1+2 x} (1+2 x)+\frac {6 \int e^{2 x} \, dx}{e}\\ &=3 e^{-1+2 x}+\frac {2 x^3}{e}-3 e^{-1+2 x} (1+2 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 18, normalized size = 0.90 \begin {gather*} \frac {-6 e^{2 x} x+2 x^3}{e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 15, normalized size = 0.75 \begin {gather*} 2 \, {\left (x^{3} - 3 \, x e^{\left (2 \, x\right )}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 15, normalized size = 0.75 \begin {gather*} 2 \, {\left (x^{3} - 3 \, x e^{\left (2 \, x\right )}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.90
method | result | size |
risch | \(2 \,{\mathrm e}^{-1} x^{3}-6 x \,{\mathrm e}^{2 x -1}\) | \(18\) |
default | \({\mathrm e}^{-1} \left (-6 x \,{\mathrm e}^{2 x}+2 x^{3}\right )\) | \(19\) |
norman | \(2 \,{\mathrm e}^{-1} x^{3}-6 x \,{\mathrm e}^{-1} {\mathrm e}^{2 x}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 26, normalized size = 1.30 \begin {gather*} {\left (2 \, x^{3} - 3 \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} - 3 \, e^{\left (2 \, x\right )}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 17, normalized size = 0.85 \begin {gather*} -2\,x\,{\mathrm {e}}^{-1}\,\left (3\,{\mathrm {e}}^{2\,x}-x^2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 19, normalized size = 0.95 \begin {gather*} \frac {2 x^{3}}{e} - \frac {6 x e^{2 x}}{e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________