Optimal. Leaf size=34 \[ e^{4+e^{\frac {-x+\left (\frac {e^x}{3+e+e^{e^3}}-x\right ) x}{x}}} \]
________________________________________________________________________________________
Rubi [F] time = 36.04, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (4+\exp \left (\frac {-3+e^x+e (-1-x)+e^{e^3} (-1-x)-3 x}{3+e+e^{e^3}}\right )+\frac {-3+e^x+e (-1-x)+e^{e^3} (-1-x)-3 x}{3+e+e^{e^3}}\right ) \left (-3-e-e^{e^3}+e^x\right )}{3+e+e^{e^3}} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \exp \left (4+\exp \left (\frac {-3+e^x+e (-1-x)+e^{e^3} (-1-x)-3 x}{3+e+e^{e^3}}\right )+\frac {-3+e^x+e (-1-x)+e^{e^3} (-1-x)-3 x}{3+e+e^{e^3}}\right ) \left (-3-e-e^{e^3}+e^x\right ) \, dx}{3+e+e^{e^3}}\\ &=\frac {\int \exp \left (4+\exp \left (\frac {-3+e^x+e (-1-x)+e^{e^3} (-1-x)-3 x}{3+e+e^{e^3}}\right )+\frac {-3+e^x+e (-1-x)+e^{e^3} (-1-x)-3 x}{3+e+e^{e^3}}\right ) \left (e^x-3 \left (1+\frac {1}{3} \left (e+e^{e^3}\right )\right )\right ) \, dx}{3+e+e^{e^3}}\\ &=\frac {\int \left (\exp \left (4+\exp \left (\frac {-3+e^x+e (-1-x)+e^{e^3} (-1-x)-3 x}{3+e+e^{e^3}}\right )+\frac {-3+e^x+e (-1-x)+e^{e^3} (-1-x)-3 x}{3+e+e^{e^3}}+x\right )-3 \exp \left (4+\exp \left (\frac {-3+e^x+e (-1-x)+e^{e^3} (-1-x)-3 x}{3+e+e^{e^3}}\right )+\frac {-3+e^x+e (-1-x)+e^{e^3} (-1-x)-3 x}{3+e+e^{e^3}}\right ) \left (1+\frac {1}{3} \left (e+e^{e^3}\right )\right )\right ) \, dx}{3+e+e^{e^3}}\\ &=\frac {\int \exp \left (4+\exp \left (\frac {-3+e^x+e (-1-x)+e^{e^3} (-1-x)-3 x}{3+e+e^{e^3}}\right )+\frac {-3+e^x+e (-1-x)+e^{e^3} (-1-x)-3 x}{3+e+e^{e^3}}+x\right ) \, dx}{3+e+e^{e^3}}-\int \exp \left (4+\exp \left (\frac {-3+e^x+e (-1-x)+e^{e^3} (-1-x)-3 x}{3+e+e^{e^3}}\right )+\frac {-3+e^x+e (-1-x)+e^{e^3} (-1-x)-3 x}{3+e+e^{e^3}}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.30, size = 25, normalized size = 0.74 \begin {gather*} e^{4+e^{-1+\frac {e^x}{3+e+e^{e^3}}-x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.65, size = 110, normalized size = 3.24 \begin {gather*} e^{\left (\frac {{\left (x + 1\right )} e + {\left (x + 1\right )} e^{\left (e^{3}\right )} + 3 \, x - e^{x} + 3}{e + e^{\left (e^{3}\right )} + 3} - \frac {{\left (x - 3\right )} e - {\left (e + e^{\left (e^{3}\right )} + 3\right )} e^{\left (-\frac {{\left (x + 1\right )} e + {\left (x + 1\right )} e^{\left (e^{3}\right )} + 3 \, x - e^{x} + 3}{e + e^{\left (e^{3}\right )} + 3}\right )} + {\left (x - 3\right )} e^{\left (e^{3}\right )} + 3 \, x - e^{x} - 9}{e + e^{\left (e^{3}\right )} + 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (e - e^{x} + e^{\left (e^{3}\right )} + 3\right )} e^{\left (-\frac {{\left (x + 1\right )} e + {\left (x + 1\right )} e^{\left (e^{3}\right )} + 3 \, x - e^{x} + 3}{e + e^{\left (e^{3}\right )} + 3} + e^{\left (-\frac {{\left (x + 1\right )} e + {\left (x + 1\right )} e^{\left (e^{3}\right )} + 3 \, x - e^{x} + 3}{e + e^{\left (e^{3}\right )} + 3}\right )} + 4\right )}}{e + e^{\left (e^{3}\right )} + 3}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 39, normalized size = 1.15
method | result | size |
derivativedivides | \({\mathrm e}^{{\mathrm e}^{\frac {\left (-x -1\right ) {\mathrm e}^{{\mathrm e}^{3}}+{\mathrm e}^{x}+\left (-x -1\right ) {\mathrm e}-3 x -3}{{\mathrm e}^{{\mathrm e}^{3}}+3+{\mathrm e}}}+4}\) | \(39\) |
default | \({\mathrm e}^{{\mathrm e}^{\frac {\left (-x -1\right ) {\mathrm e}^{{\mathrm e}^{3}}+{\mathrm e}^{x}+\left (-x -1\right ) {\mathrm e}-3 x -3}{{\mathrm e}^{{\mathrm e}^{3}}+3+{\mathrm e}}}+4}\) | \(39\) |
norman | \({\mathrm e}^{{\mathrm e}^{\frac {\left (-x -1\right ) {\mathrm e}^{{\mathrm e}^{3}}+{\mathrm e}^{x}+\left (-x -1\right ) {\mathrm e}-3 x -3}{{\mathrm e}^{{\mathrm e}^{3}}+3+{\mathrm e}}}+4}\) | \(39\) |
risch | \({\mathrm e}^{{\mathrm e}^{-\frac {x \,{\mathrm e}+x \,{\mathrm e}^{{\mathrm e}^{3}}+{\mathrm e}-{\mathrm e}^{x}+{\mathrm e}^{{\mathrm e}^{3}}+3 x +3}{{\mathrm e}^{{\mathrm e}^{3}}+3+{\mathrm e}}}+4}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 4.13, size = 115, normalized size = 3.38 \begin {gather*} \frac {{\left ({\left (e^{\left (e^{3}\right )} + 3\right )} e^{4} + e^{5}\right )} e^{\left (e^{\left (-\frac {x e}{e + e^{\left (e^{3}\right )} + 3} - \frac {x e^{\left (e^{3}\right )}}{e + e^{\left (e^{3}\right )} + 3} - \frac {3 \, x}{e + e^{\left (e^{3}\right )} + 3} - \frac {e}{e + e^{\left (e^{3}\right )} + 3} + \frac {e^{x}}{e + e^{\left (e^{3}\right )} + 3} - \frac {e^{\left (e^{3}\right )}}{e + e^{\left (e^{3}\right )} + 3} - \frac {3}{e + e^{\left (e^{3}\right )} + 3}\right )}\right )}}{e + e^{\left (e^{3}\right )} + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.42, size = 103, normalized size = 3.03 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{-\frac {\mathrm {e}}{\mathrm {e}+{\mathrm {e}}^{{\mathrm {e}}^3}+3}}\,{\mathrm {e}}^{-\frac {3\,x}{\mathrm {e}+{\mathrm {e}}^{{\mathrm {e}}^3}+3}}\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^{{\mathrm {e}}^3}}{\mathrm {e}+{\mathrm {e}}^{{\mathrm {e}}^3}+3}}\,{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{\mathrm {e}+{\mathrm {e}}^{{\mathrm {e}}^3}+3}}\,{\mathrm {e}}^{-\frac {x\,\mathrm {e}}{\mathrm {e}+{\mathrm {e}}^{{\mathrm {e}}^3}+3}}\,{\mathrm {e}}^{-\frac {3}{\mathrm {e}+{\mathrm {e}}^{{\mathrm {e}}^3}+3}}\,{\mathrm {e}}^{-\frac {x\,{\mathrm {e}}^{{\mathrm {e}}^3}}{\mathrm {e}+{\mathrm {e}}^{{\mathrm {e}}^3}+3}}}\,{\mathrm {e}}^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.79, size = 41, normalized size = 1.21 \begin {gather*} e^{e^{\frac {- 3 x + e \left (- x - 1\right ) + \left (- x - 1\right ) e^{e^{3}} + e^{x} - 3}{e + 3 + e^{e^{3}}}} + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________