Optimal. Leaf size=21 \[ -5+8 x-e^{-5+\frac {5+x}{x}} x^4 \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 37, normalized size of antiderivative = 1.76, number of steps used = 3, number of rules used = 2, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {1593, 2288} \begin {gather*} 8 x-\frac {5 e^{\frac {5-4 x}{x}} x^2}{\frac {5-4 x}{x^2}+\frac {4}{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=8 x+\int e^{\frac {5-4 x}{x}} \left (5 x^2-4 x^3\right ) \, dx\\ &=8 x+\int e^{\frac {5-4 x}{x}} (5-4 x) x^2 \, dx\\ &=8 x-\frac {5 e^{\frac {5-4 x}{x}} x^2}{\frac {5-4 x}{x^2}+\frac {4}{x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 18, normalized size = 0.86 \begin {gather*} 8 x-e^{-4+\frac {5}{x}} x^4 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.82, size = 20, normalized size = 0.95 \begin {gather*} -x^{4} e^{\left (-\frac {4 \, x - 5}{x}\right )} + 8 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 66, normalized size = 3.14 \begin {gather*} 8 \, x - \frac {625 \, e^{\left (-\frac {4 \, x - 5}{x}\right )}}{\frac {{\left (4 \, x - 5\right )}^{4}}{x^{4}} - \frac {16 \, {\left (4 \, x - 5\right )}^{3}}{x^{3}} + \frac {96 \, {\left (4 \, x - 5\right )}^{2}}{x^{2}} - \frac {256 \, {\left (4 \, x - 5\right )}}{x} + 256} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 18, normalized size = 0.86
method | result | size |
derivativedivides | \(8 x -{\mathrm e}^{\frac {5}{x}-4} x^{4}\) | \(18\) |
default | \(8 x -{\mathrm e}^{\frac {5}{x}-4} x^{4}\) | \(18\) |
norman | \(8 x -x^{4} {\mathrm e}^{\frac {-4 x +5}{x}}\) | \(20\) |
risch | \(8 x -x^{4} {\mathrm e}^{-\frac {4 x -5}{x}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.58, size = 26, normalized size = 1.24 \begin {gather*} -625 \, e^{\left (-4\right )} \Gamma \left (-3, -\frac {5}{x}\right ) - 2500 \, e^{\left (-4\right )} \Gamma \left (-4, -\frac {5}{x}\right ) + 8 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.15, size = 17, normalized size = 0.81 \begin {gather*} 8\,x-x^4\,{\mathrm {e}}^{-4}\,{\mathrm {e}}^{5/x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 14, normalized size = 0.67 \begin {gather*} - x^{4} e^{\frac {5 - 4 x}{x}} + 8 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________