Optimal. Leaf size=23 \[ e^{\frac {4 \left (3+x+x \left (-4+\frac {x}{e^4}\right )\right )}{-1+2 x}} \]
________________________________________________________________________________________
Rubi [F] time = 0.86, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-4+\frac {e^4 (12-12 x)+4 x^2}{e^4 (-1+2 x)}\right ) \left (-12 e^4-8 x+8 x^2\right )}{1-4 x+4 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (-4+\frac {e^4 (12-12 x)+4 x^2}{e^4 (-1+2 x)}\right ) \left (-12 e^4-8 x+8 x^2\right )}{(-1+2 x)^2} \, dx\\ &=\int \frac {\exp \left (-\frac {4 \left (-4 e^4+5 e^4 x-x^2\right )}{e^4 (-1+2 x)}\right ) \left (-12 e^4-8 x+8 x^2\right )}{(1-2 x)^2} \, dx\\ &=\int \left (2 \exp \left (-\frac {4 \left (-4 e^4+5 e^4 x-x^2\right )}{e^4 (-1+2 x)}\right )-\frac {2 \exp \left (-\frac {4 \left (-4 e^4+5 e^4 x-x^2\right )}{e^4 (-1+2 x)}\right ) \left (1+6 e^4\right )}{(-1+2 x)^2}\right ) \, dx\\ &=2 \int \exp \left (-\frac {4 \left (-4 e^4+5 e^4 x-x^2\right )}{e^4 (-1+2 x)}\right ) \, dx-\left (2 \left (1+6 e^4\right )\right ) \int \frac {\exp \left (-\frac {4 \left (-4 e^4+5 e^4 x-x^2\right )}{e^4 (-1+2 x)}\right )}{(-1+2 x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 26, normalized size = 1.13 \begin {gather*} e^{\frac {4 \left (-3 e^4 (-1+x)+x^2\right )}{e^4 (-1+2 x)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.05, size = 27, normalized size = 1.17 \begin {gather*} e^{\left (\frac {4 \, {\left (x^{2} - {\left (5 \, x - 4\right )} e^{4}\right )} e^{\left (-4\right )}}{2 \, x - 1} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 53, normalized size = 2.30 \begin {gather*} e^{\left (\frac {4 \, x^{2}}{2 \, x e^{4} - e^{4}} - \frac {20 \, x e^{4}}{2 \, x e^{4} - e^{4}} + \frac {16 \, e^{4}}{2 \, x e^{4} - e^{4}} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.38, size = 28, normalized size = 1.22
method | result | size |
risch | \({\mathrm e}^{-\frac {4 \left (3 x \,{\mathrm e}^{4}-x^{2}-3 \,{\mathrm e}^{4}\right ) {\mathrm e}^{-4}}{2 x -1}}\) | \(28\) |
gosper | \({\mathrm e}^{-\frac {4 \left (3 x \,{\mathrm e}^{4}-x^{2}-3 \,{\mathrm e}^{4}\right ) {\mathrm e}^{-4}}{2 x -1}}\) | \(30\) |
norman | \(\frac {2 x \,{\mathrm e}^{\frac {\left (\left (-12 x +12\right ) {\mathrm e}^{4}+4 x^{2}\right ) {\mathrm e}^{-4}}{2 x -1}}-{\mathrm e}^{\frac {\left (\left (-12 x +12\right ) {\mathrm e}^{4}+4 x^{2}\right ) {\mathrm e}^{-4}}{2 x -1}}}{2 x -1}\) | \(69\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.78, size = 31, normalized size = 1.35 \begin {gather*} e^{\left (2 \, x e^{\left (-4\right )} + \frac {1}{2 \, x e^{4} - e^{4}} + \frac {6}{2 \, x - 1} + e^{\left (-4\right )} - 6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.33, size = 37, normalized size = 1.61 \begin {gather*} {\mathrm {e}}^{\frac {12}{2\,x-1}}\,{\mathrm {e}}^{\frac {4\,x^2\,{\mathrm {e}}^{-4}}{2\,x-1}}\,{\mathrm {e}}^{-\frac {12\,x}{2\,x-1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 22, normalized size = 0.96 \begin {gather*} e^{\frac {4 x^{2} + \left (12 - 12 x\right ) e^{4}}{\left (2 x - 1\right ) e^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________