Optimal. Leaf size=23 \[ -13-x-\frac {1}{81+\frac {\log \left (1+e^{x^4}\right )}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 1.80, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-6561 x^2+e^{x^4} \left (-6561 x^2+4 x^4\right )+\left (-1+e^{x^4} (-1-162 x)-162 x\right ) \log \left (1+e^{x^4}\right )+\left (-1-e^{x^4}\right ) \log ^2\left (1+e^{x^4}\right )}{6561 x^2+6561 e^{x^4} x^2+\left (162 x+162 e^{x^4} x\right ) \log \left (1+e^{x^4}\right )+\left (1+e^{x^4}\right ) \log ^2\left (1+e^{x^4}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2 \left (-6561+e^{x^4} \left (-6561+4 x^2\right )\right )-\left (1+e^{x^4}\right ) (1+162 x) \log \left (1+e^{x^4}\right )-\left (1+e^{x^4}\right ) \log ^2\left (1+e^{x^4}\right )}{\left (1+e^{x^4}\right ) \left (81 x+\log \left (1+e^{x^4}\right )\right )^2} \, dx\\ &=\int \left (-\frac {4 x^4}{\left (1+e^{x^4}\right ) \left (81 x+\log \left (1+e^{x^4}\right )\right )^2}+\frac {-6561 x^2+4 x^4-\log \left (1+e^{x^4}\right )-162 x \log \left (1+e^{x^4}\right )-\log ^2\left (1+e^{x^4}\right )}{\left (81 x+\log \left (1+e^{x^4}\right )\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {x^4}{\left (1+e^{x^4}\right ) \left (81 x+\log \left (1+e^{x^4}\right )\right )^2} \, dx\right )+\int \frac {-6561 x^2+4 x^4-\log \left (1+e^{x^4}\right )-162 x \log \left (1+e^{x^4}\right )-\log ^2\left (1+e^{x^4}\right )}{\left (81 x+\log \left (1+e^{x^4}\right )\right )^2} \, dx\\ &=-\left (4 \int \frac {x^4}{\left (1+e^{x^4}\right ) \left (81 x+\log \left (1+e^{x^4}\right )\right )^2} \, dx\right )+\int \left (-1+\frac {1}{-81 x-\log \left (1+e^{x^4}\right )}+\frac {x \left (81+4 x^3\right )}{\left (81 x+\log \left (1+e^{x^4}\right )\right )^2}\right ) \, dx\\ &=-x-4 \int \frac {x^4}{\left (1+e^{x^4}\right ) \left (81 x+\log \left (1+e^{x^4}\right )\right )^2} \, dx+\int \frac {1}{-81 x-\log \left (1+e^{x^4}\right )} \, dx+\int \frac {x \left (81+4 x^3\right )}{\left (81 x+\log \left (1+e^{x^4}\right )\right )^2} \, dx\\ &=-x-4 \int \frac {x^4}{\left (1+e^{x^4}\right ) \left (81 x+\log \left (1+e^{x^4}\right )\right )^2} \, dx+\int \frac {1}{-81 x-\log \left (1+e^{x^4}\right )} \, dx+\int \left (\frac {81 x}{\left (81 x+\log \left (1+e^{x^4}\right )\right )^2}+\frac {4 x^4}{\left (81 x+\log \left (1+e^{x^4}\right )\right )^2}\right ) \, dx\\ &=-x+4 \int \frac {x^4}{\left (81 x+\log \left (1+e^{x^4}\right )\right )^2} \, dx-4 \int \frac {x^4}{\left (1+e^{x^4}\right ) \left (81 x+\log \left (1+e^{x^4}\right )\right )^2} \, dx+81 \int \frac {x}{\left (81 x+\log \left (1+e^{x^4}\right )\right )^2} \, dx+\int \frac {1}{-81 x-\log \left (1+e^{x^4}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 21, normalized size = 0.91 \begin {gather*} -x-\frac {x}{81 x+\log \left (1+e^{x^4}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 31, normalized size = 1.35 \begin {gather*} -\frac {81 \, x^{2} + x \log \left (e^{\left (x^{4}\right )} + 1\right ) + x}{81 \, x + \log \left (e^{\left (x^{4}\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.57, size = 31, normalized size = 1.35 \begin {gather*} -\frac {81 \, x^{2} + x \log \left (e^{\left (x^{4}\right )} + 1\right ) + x}{81 \, x + \log \left (e^{\left (x^{4}\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 0.91
method | result | size |
risch | \(-x -\frac {x}{81 x +\ln \left ({\mathrm e}^{x^{4}}+1\right )}\) | \(21\) |
norman | \(\frac {\frac {\ln \left ({\mathrm e}^{x^{4}}+1\right )}{81}-\ln \left ({\mathrm e}^{x^{4}}+1\right ) x -81 x^{2}}{81 x +\ln \left ({\mathrm e}^{x^{4}}+1\right )}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 31, normalized size = 1.35 \begin {gather*} -\frac {81 \, x^{2} + x \log \left (e^{\left (x^{4}\right )} + 1\right ) + x}{81 \, x + \log \left (e^{\left (x^{4}\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {{\ln \left ({\mathrm {e}}^{x^4}+1\right )}^2\,\left ({\mathrm {e}}^{x^4}+1\right )+{\mathrm {e}}^{x^4}\,\left (6561\,x^2-4\,x^4\right )+\ln \left ({\mathrm {e}}^{x^4}+1\right )\,\left (162\,x+{\mathrm {e}}^{x^4}\,\left (162\,x+1\right )+1\right )+6561\,x^2}{{\ln \left ({\mathrm {e}}^{x^4}+1\right )}^2\,\left ({\mathrm {e}}^{x^4}+1\right )+6561\,x^2\,{\mathrm {e}}^{x^4}+\ln \left ({\mathrm {e}}^{x^4}+1\right )\,\left (162\,x+162\,x\,{\mathrm {e}}^{x^4}\right )+6561\,x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 15, normalized size = 0.65 \begin {gather*} - x - \frac {x}{81 x + \log {\left (e^{x^{4}} + 1 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________