Optimal. Leaf size=24 \[ e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 8.57, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {2 x^2}{10+7 x+x^2+e^{5+x} (10+2 x)}} \left (40 x+14 x^2+e^{5+x} \left (40 x-16 x^2-4 x^3\right )\right )}{100+140 x+69 x^2+14 x^3+x^4+e^{10+2 x} \left (100+40 x+4 x^2\right )+e^{5+x} \left (200+180 x+48 x^2+4 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}} x \left (20+7 x-2 e^{5+x} \left (-10+4 x+x^2\right )\right )}{(5+x)^2 \left (2+2 e^{5+x}+x\right )^2} \, dx\\ &=2 \int \frac {e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}} x \left (20+7 x-2 e^{5+x} \left (-10+4 x+x^2\right )\right )}{(5+x)^2 \left (2+2 e^{5+x}+x\right )^2} \, dx\\ &=2 \int \left (\frac {e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}} x^2 (1+x)}{(5+x) \left (2+2 e^{5+x}+x\right )^2}-\frac {e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}} x \left (-10+4 x+x^2\right )}{(5+x)^2 \left (2+2 e^{5+x}+x\right )}\right ) \, dx\\ &=2 \int \frac {e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}} x^2 (1+x)}{(5+x) \left (2+2 e^{5+x}+x\right )^2} \, dx-2 \int \frac {e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}} x \left (-10+4 x+x^2\right )}{(5+x)^2 \left (2+2 e^{5+x}+x\right )} \, dx\\ &=2 \int \left (\frac {20 e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}}}{\left (2+2 e^{5+x}+x\right )^2}-\frac {4 e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}} x}{\left (2+2 e^{5+x}+x\right )^2}+\frac {e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}} x^2}{\left (2+2 e^{5+x}+x\right )^2}-\frac {100 e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}}}{(5+x) \left (2+2 e^{5+x}+x\right )^2}\right ) \, dx-2 \int \left (-\frac {6 e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}}}{2+2 e^{5+x}+x}+\frac {e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}} x}{2+2 e^{5+x}+x}+\frac {25 e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}}}{(5+x)^2 \left (2+2 e^{5+x}+x\right )}+\frac {25 e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}}}{(5+x) \left (2+2 e^{5+x}+x\right )}\right ) \, dx\\ &=2 \int \frac {e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}} x^2}{\left (2+2 e^{5+x}+x\right )^2} \, dx-2 \int \frac {e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}} x}{2+2 e^{5+x}+x} \, dx-8 \int \frac {e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}} x}{\left (2+2 e^{5+x}+x\right )^2} \, dx+12 \int \frac {e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}}}{2+2 e^{5+x}+x} \, dx+40 \int \frac {e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}}}{\left (2+2 e^{5+x}+x\right )^2} \, dx-50 \int \frac {e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}}}{(5+x)^2 \left (2+2 e^{5+x}+x\right )} \, dx-50 \int \frac {e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}}}{(5+x) \left (2+2 e^{5+x}+x\right )} \, dx-200 \int \frac {e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}}}{(5+x) \left (2+2 e^{5+x}+x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.96, size = 24, normalized size = 1.00 \begin {gather*} e^{\frac {2 x^2}{(5+x) \left (2+2 e^{5+x}+x\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 25, normalized size = 1.04 \begin {gather*} e^{\left (\frac {2 \, x^{2}}{x^{2} + 2 \, {\left (x + 5\right )} e^{\left (x + 5\right )} + 7 \, x + 10}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.63, size = 23, normalized size = 0.96
method | result | size |
risch | \({\mathrm e}^{\frac {2 x^{2}}{\left (5+x \right ) \left (x +2 \,{\mathrm e}^{5+x}+2\right )}}\) | \(23\) |
norman | \(\frac {x^{2} {\mathrm e}^{\frac {2 x^{2}}{\left (2 x +10\right ) {\mathrm e}^{5} {\mathrm e}^{x}+x^{2}+7 x +10}}+7 x \,{\mathrm e}^{\frac {2 x^{2}}{\left (2 x +10\right ) {\mathrm e}^{5} {\mathrm e}^{x}+x^{2}+7 x +10}}+10 \,{\mathrm e}^{5} {\mathrm e}^{x} {\mathrm e}^{\frac {2 x^{2}}{\left (2 x +10\right ) {\mathrm e}^{5} {\mathrm e}^{x}+x^{2}+7 x +10}}+2 x \,{\mathrm e}^{5} {\mathrm e}^{x} {\mathrm e}^{\frac {2 x^{2}}{\left (2 x +10\right ) {\mathrm e}^{5} {\mathrm e}^{x}+x^{2}+7 x +10}}+10 \,{\mathrm e}^{\frac {2 x^{2}}{\left (2 x +10\right ) {\mathrm e}^{5} {\mathrm e}^{x}+x^{2}+7 x +10}}}{\left (5+x \right ) \left (2 \,{\mathrm e}^{5} {\mathrm e}^{x}+2+x \right )}\) | \(171\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.03, size = 125, normalized size = 5.21 \begin {gather*} e^{\left (-\frac {8 \, e^{\left (2 \, x + 10\right )}}{2 \, {\left (x e^{5} - e^{5}\right )} e^{x} - 3 \, x + 4 \, e^{\left (2 \, x + 10\right )} - 6} - \frac {16 \, e^{\left (x + 5\right )}}{2 \, {\left (x e^{5} - e^{5}\right )} e^{x} - 3 \, x + 4 \, e^{\left (2 \, x + 10\right )} - 6} + \frac {50}{2 \, {\left (x e^{5} + 5 \, e^{5}\right )} e^{x} - 3 \, x - 15} - \frac {8}{2 \, {\left (x e^{5} - e^{5}\right )} e^{x} - 3 \, x + 4 \, e^{\left (2 \, x + 10\right )} - 6} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.95, size = 29, normalized size = 1.21 \begin {gather*} {\mathrm {e}}^{\frac {2\,x^2}{7\,x+10\,{\mathrm {e}}^5\,{\mathrm {e}}^x+x^2+2\,x\,{\mathrm {e}}^5\,{\mathrm {e}}^x+10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.57, size = 26, normalized size = 1.08 \begin {gather*} e^{\frac {2 x^{2}}{x^{2} + 7 x + \left (2 x + 10\right ) e^{5} e^{x} + 10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________