Optimal. Leaf size=25 \[ 1+4 e^{e^{\frac {3}{\log ^2\left (\frac {1}{4} \left (2+\log \left (x^2\right )\right )\right )}}}+\log (2) \]
________________________________________________________________________________________
Rubi [A] time = 0.78, antiderivative size = 21, normalized size of antiderivative = 0.84, number of steps used = 8, number of rules used = 4, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {12, 6715, 2282, 2194} \begin {gather*} 4 e^{e^{\frac {3}{\log ^2\left (\frac {1}{4} \left (\log \left (x^2\right )+2\right )\right )}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rule 6715
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (48 \int \frac {\exp \left (e^{\frac {3}{\log ^2\left (\frac {1}{4} \left (2+\log \left (x^2\right )\right )\right )}}+\frac {3}{\log ^2\left (\frac {1}{4} \left (2+\log \left (x^2\right )\right )\right )}\right )}{\left (2 x+x \log \left (x^2\right )\right ) \log ^3\left (\frac {1}{4} \left (2+\log \left (x^2\right )\right )\right )} \, dx\right )\\ &=-\left (24 \operatorname {Subst}\left (\int \frac {e^{e^{\frac {3}{\log ^2\left (\frac {2+x}{4}\right )}}+\frac {3}{\log ^2\left (\frac {2+x}{4}\right )}}}{(2+x) \log ^3\left (\frac {2+x}{4}\right )} \, dx,x,\log \left (x^2\right )\right )\right )\\ &=-\left (96 \operatorname {Subst}\left (\int \frac {e^{e^{\frac {3}{\log ^2(x)}}+\frac {3}{\log ^2(x)}}}{4 x \log ^3(x)} \, dx,x,\frac {1}{2}+\frac {\log \left (x^2\right )}{4}\right )\right )\\ &=-\left (24 \operatorname {Subst}\left (\int \frac {e^{e^{\frac {3}{\log ^2(x)}}+\frac {3}{\log ^2(x)}}}{x \log ^3(x)} \, dx,x,\frac {1}{2}+\frac {\log \left (x^2\right )}{4}\right )\right )\\ &=-\left (24 \operatorname {Subst}\left (\int \frac {e^{e^{\frac {3}{x^2}}+\frac {3}{x^2}}}{x^3} \, dx,x,\log \left (\frac {1}{2}+\frac {\log \left (x^2\right )}{4}\right )\right )\right )\\ &=12 \operatorname {Subst}\left (\int e^{e^{3 x}+3 x} \, dx,x,\frac {1}{\log ^2\left (\frac {1}{2}+\frac {\log \left (x^2\right )}{4}\right )}\right )\\ &=4 \operatorname {Subst}\left (\int e^x \, dx,x,e^{\frac {3}{\log ^2\left (\frac {1}{2}+\frac {\log \left (x^2\right )}{4}\right )}}\right )\\ &=4 e^{e^{\frac {3}{\log ^2\left (\frac {1}{2}+\frac {\log \left (x^2\right )}{4}\right )}}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.85, size = 21, normalized size = 0.84 \begin {gather*} 4 e^{e^{\frac {3}{\log ^2\left (\frac {1}{4} \left (2+\log \left (x^2\right )\right )\right )}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.02, size = 57, normalized size = 2.28 \begin {gather*} 4 \, e^{\left (\frac {e^{\left (\frac {3}{\log \left (\frac {1}{4} \, \log \left (x^{2}\right ) + \frac {1}{2}\right )^{2}}\right )} \log \left (\frac {1}{4} \, \log \left (x^{2}\right ) + \frac {1}{2}\right )^{2} + 3}{\log \left (\frac {1}{4} \, \log \left (x^{2}\right ) + \frac {1}{2}\right )^{2}} - \frac {3}{\log \left (\frac {1}{4} \, \log \left (x^{2}\right ) + \frac {1}{2}\right )^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.31, size = 17, normalized size = 0.68 \begin {gather*} 4 \, e^{\left (e^{\left (\frac {3}{\log \left (\frac {1}{4} \, \log \left (x^{2}\right ) + \frac {1}{2}\right )^{2}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.19, size = 0, normalized size = 0.00 \[\int -\frac {48 \,{\mathrm e}^{\frac {3}{\ln \left (\frac {1}{2}+\frac {\ln \left (x^{2}\right )}{4}\right )^{2}}} {\mathrm e}^{{\mathrm e}^{\frac {3}{\ln \left (\frac {1}{2}+\frac {\ln \left (x^{2}\right )}{4}\right )^{2}}}}}{\left (x \ln \left (x^{2}\right )+2 x \right ) \ln \left (\frac {1}{2}+\frac {\ln \left (x^{2}\right )}{4}\right )^{3}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 29, normalized size = 1.16 \begin {gather*} 4 \, e^{\left (e^{\left (\frac {3}{\log \relax (2)^{2} - 2 \, \log \relax (2) \log \left (\log \relax (x) + 1\right ) + \log \left (\log \relax (x) + 1\right )^{2}}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.62, size = 17, normalized size = 0.68 \begin {gather*} 4\,{\mathrm {e}}^{{\mathrm {e}}^{\frac {3}{{\ln \left (\frac {\ln \left (x^2\right )}{4}+\frac {1}{2}\right )}^2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.94, size = 19, normalized size = 0.76 \begin {gather*} 4 e^{e^{\frac {3}{\log {\left (\frac {\log {\left (x^{2} \right )}}{4} + \frac {1}{2} \right )}^{2}}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________