Optimal. Leaf size=22 \[ x+\frac {4+x+x^2}{x}+\log \left (4+e^{5/x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.20, antiderivative size = 19, normalized size of antiderivative = 0.86, number of steps used = 9, number of rules used = 7, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {6742, 6715, 2282, 36, 29, 31, 14} \begin {gather*} 2 x+\frac {4}{x}+\log \left (e^{5/x}+4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 29
Rule 31
Rule 36
Rule 2282
Rule 6715
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {20}{\left (4+e^{5/x}\right ) x^2}+\frac {-9+2 x^2}{x^2}\right ) \, dx\\ &=20 \int \frac {1}{\left (4+e^{5/x}\right ) x^2} \, dx+\int \frac {-9+2 x^2}{x^2} \, dx\\ &=-\left (20 \operatorname {Subst}\left (\int \frac {1}{4+e^{5 x}} \, dx,x,\frac {1}{x}\right )\right )+\int \left (2-\frac {9}{x^2}\right ) \, dx\\ &=\frac {9}{x}+2 x-4 \operatorname {Subst}\left (\int \frac {1}{x (4+x)} \, dx,x,e^{5/x}\right )\\ &=\frac {9}{x}+2 x-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^{5/x}\right )+\operatorname {Subst}\left (\int \frac {1}{4+x} \, dx,x,e^{5/x}\right )\\ &=\frac {4}{x}+2 x+\log \left (4+e^{5/x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 19, normalized size = 0.86 \begin {gather*} \frac {4}{x}+2 x+\log \left (4+e^{5/x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 22, normalized size = 1.00 \begin {gather*} \frac {2 \, x^{2} + x \log \left (e^{\frac {5}{x}} + 4\right ) + 4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 22, normalized size = 1.00 \begin {gather*} x {\left (\frac {\log \left (e^{\frac {5}{x}} + 4\right )}{x} + \frac {4}{x^{2}} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 19, normalized size = 0.86
method | result | size |
risch | \(2 x +\frac {4}{x}+\ln \left ({\mathrm e}^{\frac {5}{x}}+4\right )\) | \(19\) |
norman | \(\frac {2 x^{2}+4}{x}+\ln \left ({\mathrm e}^{\frac {5}{x}}+4\right )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.66, size = 18, normalized size = 0.82 \begin {gather*} 2 \, x + \frac {4}{x} + \log \left (e^{\frac {5}{x}} + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.15, size = 23, normalized size = 1.05 \begin {gather*} \ln \left ({\mathrm {e}}^{5/x}+4\right )+\frac {2\,x^3+4\,x}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 14, normalized size = 0.64 \begin {gather*} 2 x + \log {\left (e^{\frac {5}{x}} + 4 \right )} + \frac {4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________